CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4793-4803.DOI: 10.11949/0438-1157.20240434
• Energy and environmental engineering • Previous Articles Next Articles
Wenxian GUO1(), Yan ZHANG1,3, Yun ZHANG1, Caizhi DENG1, Jinyu SHI1, Meiqiong CHEN2,3(
), Min ZHANG3, Faliang CHENG3(
)
Received:
2024-04-22
Revised:
2024-08-27
Online:
2025-01-03
Published:
2024-12-25
Contact:
Meiqiong CHEN, Faliang CHENG
郭文显1(), 张燕1,3, 张云1, 邓才智1, 石锦煜1, 陈妹琼2,3(
), 张敏3, 程发良3(
)
通讯作者:
陈妹琼,程发良
作者简介:
郭文显(1980—),男,硕士,副教授,guowenxian@dgcu.edu.cn
基金资助:
CLC Number:
Wenxian GUO, Yan ZHANG, Yun ZHANG, Caizhi DENG, Jinyu SHI, Meiqiong CHEN, Min ZHANG, Faliang CHENG. High-performance microbial fuel cell based on activated biomass carbon aerogel[J]. CIESC Journal, 2024, 75(12): 4793-4803.
郭文显, 张燕, 张云, 邓才智, 石锦煜, 陈妹琼, 张敏, 程发良. 基于活化生物质碳气凝胶的高性能微生物燃料电池[J]. 化工学报, 2024, 75(12): 4793-4803.
电极 | Rohm/Ω | Rct/Ω | CPE | Q | ||
---|---|---|---|---|---|---|
Y0/(Ω-1·s n ) | n | Y0/(Ω-1·s n ) | n | |||
CA-900℃ | 5.13 | 2.68 | 0.09 | 0.34 | 0.11 | 0.31 |
ACA-30 min | 7.0 | 0.82 | 0.007 | 0.68 | 0.37 | 0.52 |
Tabel 1 Equivalent electrical circuit parameters obtained by the EIS studies
电极 | Rohm/Ω | Rct/Ω | CPE | Q | ||
---|---|---|---|---|---|---|
Y0/(Ω-1·s n ) | n | Y0/(Ω-1·s n ) | n | |||
CA-900℃ | 5.13 | 2.68 | 0.09 | 0.34 | 0.11 | 0.31 |
ACA-30 min | 7.0 | 0.82 | 0.007 | 0.68 | 0.37 | 0.52 |
前体 | 处理方式 | MFCs构型 | 基质 | 产电微生物 | 最大功率密度 | 文献 |
---|---|---|---|---|---|---|
竹子 | 炭化 | 双室 | 乙酸盐 | 混合菌 | (1652±18) mW/m2 | [ |
松球 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
栗子壳 | 炭化+活化 | 双室 | 乙酸盐 | 混合菌 | 23.6 W/m3 | [ |
木棉纤维 | 炭化 | 单室 | 乙酸盐 | 混合菌 | 27.9 W/m3 | [ |
丝瓜络 | 表面负载墨汁 | 单室 | 乙酸盐 | 混合菌 | 0.82 mW/cm3 | [ |
丝瓜络 | H2O2 处理 | 双室 | 乙酸盐 | 混合菌 | (61.7±0.6) W/m3 | [ |
苍耳子碳 | 炭化活化 | 双室 | 乙酸盐 | 混合菌 | (572.57±24.90) μW/m3 | [ |
松果碳 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
葵花壳碳 | 炭化活化 | 双室 | 磷酸盐 | 希瓦氏菌 | 28.00 W/m3 | [ |
甘蔗 | 冷干炭化+活化 | 双室 | 葡萄糖 | 大肠杆菌 | 58.56 W/m3 | 本研究 |
Table 2 Performance comparison of MFCs with different biomass carbon anodes
前体 | 处理方式 | MFCs构型 | 基质 | 产电微生物 | 最大功率密度 | 文献 |
---|---|---|---|---|---|---|
竹子 | 炭化 | 双室 | 乙酸盐 | 混合菌 | (1652±18) mW/m2 | [ |
松球 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
栗子壳 | 炭化+活化 | 双室 | 乙酸盐 | 混合菌 | 23.6 W/m3 | [ |
木棉纤维 | 炭化 | 单室 | 乙酸盐 | 混合菌 | 27.9 W/m3 | [ |
丝瓜络 | 表面负载墨汁 | 单室 | 乙酸盐 | 混合菌 | 0.82 mW/cm3 | [ |
丝瓜络 | H2O2 处理 | 双室 | 乙酸盐 | 混合菌 | (61.7±0.6) W/m3 | [ |
苍耳子碳 | 炭化活化 | 双室 | 乙酸盐 | 混合菌 | (572.57±24.90) μW/m3 | [ |
松果碳 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
葵花壳碳 | 炭化活化 | 双室 | 磷酸盐 | 希瓦氏菌 | 28.00 W/m3 | [ |
甘蔗 | 冷干炭化+活化 | 双室 | 葡萄糖 | 大肠杆菌 | 58.56 W/m3 | 本研究 |
1 | Zhang S, Jiang J, Wang H, et al. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts[J]. Journal of CO2 Utilization, 2021, 51: 101640. |
2 | Zhao J, Li F, Cao Y, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms[J]. Biotechnology Advances, 2021, 53: 107682. |
3 | Sun M, Zhai L F, Li W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10): 2847-2870. |
4 | Li S, Cheng C, Thomas A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts[J]. Advanced Materials, 2017, 29(8): 1602547. |
5 | Yang W, Chen S. Biomass-derived carbon for electrode fabrication in microbial fuel cells: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6391-6404. |
6 | Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435. |
7 | Wang Y, He C, Li W, et al. High power generation in mixed-culture microbial fuel cells with corncob-derived three-dimensional N-doped bioanodes and the impact of N dopant states[J]. Chemical Engineering Journal, 2020, 399: 125848. |
8 | Vempaty A, Kumar A, Pandit S, et al. Evaluation of the Datura peels derived biochar-based anode for enhancing power output in microbial fuel cell application[J]. Biocatalysis and Agricultural Biotechnology, 2023, 47: 102560. |
9 | Zhang Y, Wang F, Zhu H, et al. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors[J]. Applied Surface Science, 2017, 426: 99-106. |
10 | Kobina Sam D, Kobina Sam E, Lv X. Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors[J]. ChemElectroChem, 2020, 7(18): 3695-3712. |
11 | Chen Y, Zhang L, Yang Y, et al. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications[J]. Advanced Materials, 2021, 33(11): 2005569. |
12 | 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98. |
Chen Y, Han Y M, Fan D B, et al. Carbon aerogel based on biomass cellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88-98. | |
13 | Hao P, Zhao Z, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120-12129. |
14 | Chen Y, Fan D, Lyu S, et al. Elasticity-enhanced and aligned structure nanocellulose foam-like aerogel assembled with cooperation of chemical art and gradient freezing[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1381-1388. |
15 | Chen Y, Yang S, Fan D, et al. Dual-enhanced hydrophobic and mechanical properties of long-range 3D anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12878-12886. |
16 | Li Y Q, Samad Y A, Polychronopoulou K, et al. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1492-1497. |
17 | Li Y Q, Samad Y A, Polychronopoulou K, et al. Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1419-1427. |
18 | Guo W, Chen M, Liu X, et al. Mo2C/reduced graphene oxide composites with enhanced electrocatalytic activity and biocompatibility for microbial fuel cells[J]. Chemistry - A European Journal, 2021, 27(13): 4291-4296. |
19 | Li X, Hu M H, Zeng L Z, et al. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells[J]. Biosensors and Bioelectronics, 2019, 145: 111727. |
20 | Xiao K, Ding L X, Chen H B, et al. Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(2): 372-378. |
21 | Chen M Q, Guo W X, Zhang Y, et al. Activated nitrogen-doped ordered porous carbon as advanced anode for high-performance microbial fuel cells[J]. Electrochimica Acta, 2021, 391: 138920. |
22 | 魏同业. 生物质基多孔碳材料的制备与应用[D]. 湘潭: 湘潭大学, 2016. |
Wei T Y. Preparation and application of biomass-based porous carbon materials[D]. Xiangtan: Xiangtan University, 2016. | |
23 | Deeke A, Sleutels T H J A, Ter Heijne A, et al. Influence of the thickness of the capacitive layer on the performance of bioanodes in microbial fuel cells[J]. Journal of Power Sources, 2013, 243: 611-616. |
24 | Chen W W, Liu Z L, Hou J X, et al. Enhancing performance of microbial fuel cells by using novel double-layer-capacitor-materials modified anodes[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1816-1823. |
25 | Wu J X, Liu R J, Dong P F, et al. Enhanced electricity generation and storage by nitrogen-doped hierarchically porous carbon modification of the capacitive bioanode in microbial fuel cells[J]. Science of the Total Environment, 2023, 858: 159688. |
26 | Wang R W, Liu D, Yan M, et al. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells[J]. Bioresource Technology, 2019, 292: 121956. |
27 | Zhang J, Li J, Ye D D, et al. Tubular bamboo charcoal for anode in microbial fuel cells[J]. Journal of Power Sources, 2014, 272: 277-282. |
28 | Chen Q, Pu W H, Hou H J, et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. |
29 | Zhu H L, Wang H M, Li Y Y, et al. Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting[J]. Nano Energy, 2014, 10: 268-276. |
30 | Zhou L H, Sun L H, Fu P, et al. Carbon nanoparticles of Chinese ink-wrapped natural loofah sponge: a low-cost three-dimensional electrode for high-performance microbial energy harvesting[J]. Journal of Materials Chemistry A, 2017, 5(28): 14741-14747. |
31 | Yang C C, Chen M J, Qian Y J, et al. Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells[J]. Science China Materials, 2019, 62(5): 645-652. |
32 | Wang H Y, Wang G M, Ling Y C, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J]. Nanoscale, 2013, 5(21): 10283-10290. |
33 | Harnisch F, Schröder U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems[J]. Chemical Society Reviews, 2010, 39(11): 4433-4448. |
[1] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[2] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[3] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[4] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
[5] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[6] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[7] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[8] | Runlong LI, Tong XU, Fei CHEN, Chengwei MA. Lithium metal anode interface thermal distribution evolution mechanism [J]. CIESC Journal, 2024, 75(6): 2322-2331. |
[9] | Yang JIANG, Changhong PENG, Wei CHEN, Hao ZHOU, Zhongbin MA, Hongbo LI, Zairong QIU, Guopeng ZHANG, Kanggen ZHOU. Pilot study on comprehensive recycling of waste lithium iron phosphate powder [J]. CIESC Journal, 2024, 75(6): 2353-2361. |
[10] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[11] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[12] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
[13] | Jihao WU, Tao CHEN, Siyu LIU, Mengke LIU, Juan YANG. Preparation of pitch-based hard carbon by bi-functional activation strategy for sodium-ion batteries [J]. CIESC Journal, 2024, 75(3): 1019-1027. |
[14] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[15] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||