CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1519-1532.DOI: 10.11949/0438-1157.20240007
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xiaoqing YAN1(), Ying ZHAO1(), Yuzhe ZHANG1, Honghui OU1, Qizhong HUANG2, Huagui HU2, Guidong YANG1()
Received:
2024-01-03
Revised:
2024-03-22
Online:
2024-06-07
Published:
2024-04-25
Contact:
Guidong YANG
严孝清1(), 赵瑛1(), 张宇哲1, 欧鸿辉1, 黄起中2, 胡华贵2, 杨贵东1()
通讯作者:
杨贵东
作者简介:
严孝清(1990—),男,博士研究生,助理教授,xq-yan@xjtu.edu.cn基金资助:
CLC Number:
Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia[J]. CIESC Journal, 2024, 75(4): 1519-1532.
严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532.
Add to citation manager EndNote|Ris|BibTeX
样品编号 | T-CuNW/mg | 吡咯/μl | 过硫酸铵/mg | 碳酸氢钠/mg |
---|---|---|---|---|
T-CuNW | 50 | 0 | 0 | 0 |
T-CuNW-5 | 50 | 5 | 0.0114 | 0.0084 |
T-CuNW-10 | 50 | 10 | 0.0228 | 0.0168 |
T-CuNW-20 | 50 | 20 | 0.0456 | 0.0336 |
Table 1 Preparation parameters of T-CuNW@ppy
样品编号 | T-CuNW/mg | 吡咯/μl | 过硫酸铵/mg | 碳酸氢钠/mg |
---|---|---|---|---|
T-CuNW | 50 | 0 | 0 | 0 |
T-CuNW-5 | 50 | 5 | 0.0114 | 0.0084 |
T-CuNW-10 | 50 | 10 | 0.0228 | 0.0168 |
T-CuNW-20 | 50 | 20 | 0.0456 | 0.0336 |
Fig.5 LSV polarization curves of as-synthesized samples in electrolytes using 0.1 mol·L-1 KOH as solvent without (a) and with (b) adding 0.1 mol·L-1NO3-; i-t curves of as-synthesized samples [(c) T-CuNW; (d) T-CuNW-5; (e) T-CuNW-10, (f) T-CuNW-20]; eNITRR performance of as-synthesized samples under different potential in 1 mol·L-1 KOH with 0.1 mol·L-1 KNO3 (g), FE of as-synthesized samples under different potential in 1 mol·L-1 KOH with 0.1 mol·L-1 KNO3 (h); eNITRR performance of T-CuNW-10 in electrolytes using 0.1 mol·L-1 KOH as solvent without and with adding 0.1 mol·L-1NO3- (i)
催化剂 | 偏压(vs RHE)/V | NH3产生速率 | 法拉第效率/% | 文献 |
---|---|---|---|---|
T-CuNW | -0.4 | 12.04 | 84.1 | 本论文 |
T-CuNW@ppy | -0.4 | 13.83 | 83.0 | 本论文 |
Cu49Fe1-NRA | -0.7 | 4.08 mg·cm-2·h-1 | 94.5 | [ |
Cu SACs | -0.9 | 1.12 mg·cm-2·h-1 | 85.5 | [ |
Cu1Co1HHTP | -0.6 | 5.09 mg·cm-2·h-1 | 96.4 | [ |
Cu-Fe2O3 | -0.6 | 179.55 | 约100 | [ |
Cu Ni NPS/CF | -0.48 | 94.57 mg· cm-2·h-1 | 97.0 | [ |
T40-CuNCs | -0.6 | 2.62 mg·cm-2·h-1 | 96.8 | [ |
Cu SCCs | -0.5 | 1.99 mg·cm-2·h-1 | 96.0 | [ |
Cu-HTBs | -0.7 | 23789.8 | 90.0 | [ |
Cu5Pd NCs | -0.7 | 32 mg·cm-2·h-1 | 95.5 | [ |
Ru0.15Cu0.85 | -0.2 | 26.25 | 4.4 | [ |
Table 2 Comparison of eNITRR performance of T-CuNW, T-CuNW@ppy and other typical materials
催化剂 | 偏压(vs RHE)/V | NH3产生速率 | 法拉第效率/% | 文献 |
---|---|---|---|---|
T-CuNW | -0.4 | 12.04 | 84.1 | 本论文 |
T-CuNW@ppy | -0.4 | 13.83 | 83.0 | 本论文 |
Cu49Fe1-NRA | -0.7 | 4.08 mg·cm-2·h-1 | 94.5 | [ |
Cu SACs | -0.9 | 1.12 mg·cm-2·h-1 | 85.5 | [ |
Cu1Co1HHTP | -0.6 | 5.09 mg·cm-2·h-1 | 96.4 | [ |
Cu-Fe2O3 | -0.6 | 179.55 | 约100 | [ |
Cu Ni NPS/CF | -0.48 | 94.57 mg· cm-2·h-1 | 97.0 | [ |
T40-CuNCs | -0.6 | 2.62 mg·cm-2·h-1 | 96.8 | [ |
Cu SCCs | -0.5 | 1.99 mg·cm-2·h-1 | 96.0 | [ |
Cu-HTBs | -0.7 | 23789.8 | 90.0 | [ |
Cu5Pd NCs | -0.7 | 32 mg·cm-2·h-1 | 95.5 | [ |
Ru0.15Cu0.85 | -0.2 | 26.25 | 4.4 | [ |
Fig.6 (a) Cycling tests of T-CuNW-10 for eNITRR tests at -0.4 V(vs RHE); (b) Time dependent concentration change of NO3-, NO2- and NH3 over T-CuNW-10 at -0.4 V(vs RHE); (c) Time dependent concentration change of FE; (d) Time dependent concentration change of total nitrogen at -0.4 V(vs RHE); (e) NH3 yield rate and FE of T-CuNW-10 with different concentrations of nitrate; (f) FE of NH3 and NO2- on T-CuNW-10 with different concentrations of nitrate
Fig.7 (a) Open circuit potentials decays with rest time; (b) Polarization curves; (c),(d) Curve of Tafel; (e),(f)Contact angle measurements; (g) Nyquist plots for the as-synthesized samples; (h),(i) Cyclic voltammograms; (j) Linear regression curve of difference in current density and scanning rate
样品名称 | Ecorr /mV | icorr/(μA·cm-2) |
---|---|---|
T-CuNW | -416.90 | 21.01 |
T-CuNW-10 | -137.98 | 3.14 |
Table 3 Tafel curve fitting values of T-CUNW-10 and T-CuNW catalysts in 1 mol·L-1 KOH solution
样品名称 | Ecorr /mV | icorr/(μA·cm-2) |
---|---|---|
T-CuNW | -416.90 | 21.01 |
T-CuNW-10 | -137.98 | 3.14 |
样品名称 | Cdl/(mF·cm-2) | ECSA/cm2 |
---|---|---|
T-CuNW | 2.56 | 64 |
T-CuNW-10 | 8 | 200 |
Table 4 ECSA test of T-CUNW-10 and T-CuNW
样品名称 | Cdl/(mF·cm-2) | ECSA/cm2 |
---|---|---|
T-CuNW | 2.56 | 64 |
T-CuNW-10 | 8 | 200 |
1 | Wang L, Xia M K, Wang H, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
2 | Guo J P, Chen P. Catalyst: NH3 as an energy carrier[J]. Chem, 2017, 3(5): 709-712. |
3 | Sun J, Alam D, Daiyan R, et al. A hybrid plasma electrocatalytic process for sustainable ammonia production[J]. Energy & Environmental Science, 2021, 14(2): 865-872. |
4 | 张谭, 刘光, 李晋平, 等. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
Zhang T, Liu G, Li J P, et al. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts[J]. CIESC Journal, 2023, 74(6): 2264-2280. | |
5 | Van Langevelde P H, Katsounaros I, Koper M T M. Electrocatalytic nitrate reduction for sustainable ammonia production[J]. Joule, 2021, 5(2): 290-294. |
6 | Fan S H, Hu Y N, Zhang T, et al. Highly selective environmental electrocatalytic nitrogen reduction to ammonia on Fe2(MoO4)3/C composite electrocatalyst[J]. International Journal of Hydrogen Energy, 2024, 51: 1198-1206. |
7 | Fan S H, Wang Q, Hu Y N, et al. Efficient electrocatalytic conversion of N2 to NH3 using oxygen-rich vacancy lithium niobate cubes[J]. Chinese Journal of Chemical Engineering, 2023, 62: 132-138. |
8 | Chen G F, Yuan Y F, Jiang H F, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst[J]. Nature Energy, 2020, 5: 605-613. |
9 | 杨通, 何小波, 银凤翔. M-MOF-74 (M=Ni, Co, Zn) 的制备及其电化学催化合成氨性能[J]. 化工学报, 2020, 71(6): 2857-2870. |
Yang T, He X B, Yin F X. Preparation of M-MOF-74 (M=Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia[J]. CIESC Journal, 2020, 71(6): 2857-2870. | |
10 | Gao J N, Jiang B, Ni C C, et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382: 123034. |
11 | Pérez-Gallent E, Figueiredo M C, Katsounaros I, et al. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions[J]. Electrochimica Acta, 2017, 227: 77-84. |
12 | Min B, Gao Q, Yan Z H, et al. Powering the remediation of the nitrogen cycle: progress and perspectives of electrochemical nitrate reduction[J]. Industrial & Engineering Chemistry Research, 2021, 60(41): 14635-14650. |
13 | Yao Q F, Chen J B, Xiao S Z, et al. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30458-30467. |
14 | Lv C D, Zhong L X, Liu H J, et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide[J]. Nature Sustainability, 2021, 4: 868-876. |
15 | Tao Z X, Wu Y S, Wu Z S, et al. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine[J]. Journal of Energy Chemistry, 2022, 65: 367-370. |
16 | Dima G E, de Vooys A C A, Koper M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry, 2003, 554/555: 15-23. |
17 | Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568. |
18 | Fu X B, Zhao X G, Hu X B, et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets[J]. Applied Materials Today, 2020, 19: 100620. |
19 | Gao W S, Xie K F, Xie J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia[J]. Advanced Materials, 2023, 35(19): e2202952. |
20 | Wang Y T, Zhang P, Lin X Y, et al. Wide-pH-range adaptable ammonia electrosynthesis from nitrate on Cu-Pd interfaces[J]. Science China Chemistry, 2023, 66(3): 913-922. |
21 | Song M, Zhou G, Lu N, et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries[J]. Science, 2020, 367(6473): 40-45. |
22 | Tang C, Chen Z, Wang Y J, et al. Atomic editing copper twin boundary for precision CO2 reduction[J]. ACS Catalysis, 2022, 12(19): 11838-11844. |
23 | Li Y F, Cui F, Ross M B, et al. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires[J]. Nano Letters, 2017, 17(2): 1312-1317. |
24 | Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J]. Nature Catalysis, 2020, 3: 804-812. |
25 | Cai J, Zhao Q, Hsu W Y, et al. Highly selective electrochemical reduction of CO2 into methane on nanotwinned Cu[J]. Journal of the American Chemical Society, 2023, 145(16): 9136-9143. |
26 | Bouzek K, Paidar M, Sadílková A, et al. Electrochemical reduction of nitrate in weakly alkaline solutions[J]. Journal of Applied Electrochemistry, 2001, 31(11): 1185-1193. |
27 | Paidar M, Roušar I, Bouzek K. Electrochemical removal of nitrate ions in waste solutions after regeneration of ion exchange columns[J]. Journal of Applied Electrochemistry, 1999, 29(5): 611-617. |
28 | Liu Y, Liu Z, Lu N, et al. Facile synthesis of polypyrrole coated copper nanowires: a new concept to engineered core-shell structures[J]. Chemical Communications, 2012, 48(20): 2621-2623. |
29 | Wang W, Yan X Q, Geng J F, et al. Engineering a copper@polypyrrole nanowire network in the near field for plasmon-enhanced solar evaporation[J]. ACS Nano, 2021, 15(10): 16376-16394. |
30 | Niu Z Q, Chen S P, Yu Y, et al. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires[J]. Nano Research, 2020, 13(9): 2564-2569. |
31 | Zeng G F, Sun Q, Horta S, et al. A layered Bi2Te3@PPy cathode for aqueous zinc-ion batteries: mechanism and application in printed flexible batteries[J]. Advanced Materials, 2024, 36(1): e2305128. |
32 | Wang C H, Liu Z Y, Hu T, et al. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media[J]. ChemSusChem, 2021, 14(8): 1825-1829. |
33 | Xu Y T, Xie M Y, Zhong H Q, et al. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction[J]. ACS Catalysis, 2022, 12(14): 8698-8706. |
34 | Liu H M, Lang X Y, Zhu C, et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts[J]. Angewandte Chemie International Edition, 2022, 61(23): e202202556. |
35 | Fan K, Xie W F, Li J Z, et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia[J]. Nature Communications, 2022, 13: 7958. |
36 | Wang Y L, Yin H B, Dong F, et al. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia[J]. Small, 2023, 19(20): e2207695. |
37 | Li K, Ding L, Xie Z Q, et al. Robust copper-based nanosponge architecture decorated by ruthenium with enhanced electrocatalytic performance for ambient nitrogen reduction to ammonia[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 11703-11712. |
38 | Li R, Gao T T, Qiu W X, et al. Unveiling the size effect of nitrogen-doped carbon-supported copper-based catalysts on nitrate-to-ammonia electroreduction[J]. Nano Research, 2023: 1-6. |
39 | Hu Q, Huo Q H, Qi S, et al. Unconventional synthesis of hierarchically twinned copper as efficient electrocatalyst for nitrate-ammonia conversion[J]. Advanced Materials, 2024, 36(11): 2311375. |
40 | Song Z M, Qin L, Liu Y, et al. Efficient electroreduction of nitrate to ammonia with CuPd nanoalloy catalysts[J]. ChemSusChem, 2023, 16(22): e202300202. |
41 | Luo W J, Wu S L, Jiang Y Y, et al. Efficient electrocatalytic nitrate reduction to ammonia based on DNA-templated copper nanoclusters[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18928-18939. |
[1] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[2] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[3] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[4] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[5] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[6] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[7] | Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems [J]. CIESC Journal, 2024, 75(4): 1209-1221. |
[8] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[9] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[10] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[11] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[12] | Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries [J]. CIESC Journal, 2024, 75(2): 412-428. |
[13] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[14] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[15] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||