CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3401-3413.DOI: 10.11949/0438-1157.20240479
• Thermodynamics • Previous Articles Next Articles
Tenglong XIANG1(), Zhihong WANG1(
), Gui WANG2, Long LI2
Received:
2024-04-30
Revised:
2024-07-06
Online:
2024-11-04
Published:
2024-10-25
Contact:
Zhihong WANG
通讯作者:
王治红
作者简介:
向腾龙(1998—),男,硕士研究生,1569265168@qq.com
CLC Number:
Tenglong XIANG, Zhihong WANG, Gui WANG, Long LI. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413.
向腾龙, 王治红, 汪贵, 李龙. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413.
参数 | 数值 |
---|---|
LNG温度/℃ | -162.00 |
LNG压力/kPa | 200.00 |
工艺水进口温度/℃ | 25.00 |
冷冻水出口温度/℃ | 7.00 |
工艺水压力/kPa | 100.00 |
LNG质量流量/(kg/s) | 5.00 |
Table 1 Thermodynamic parameters required for the system
参数 | 数值 |
---|---|
LNG温度/℃ | -162.00 |
LNG压力/kPa | 200.00 |
工艺水进口温度/℃ | 25.00 |
冷冻水出口温度/℃ | 7.00 |
工艺水压力/kPa | 100.00 |
LNG质量流量/(kg/s) | 5.00 |
组分 | 摩尔分数/% |
---|---|
甲烷 | 90.38 |
乙烷 | 5.37 |
丙烷 | 4.04 |
氮气 | 0.21 |
Table 2 Molar fraction of LNG components[27]
组分 | 摩尔分数/% |
---|---|
甲烷 | 90.38 |
乙烷 | 5.37 |
丙烷 | 4.04 |
氮气 | 0.21 |
参数 | 数值 |
---|---|
温度/℃ | 87.50 |
压力/kPa | 300.00 |
摩尔分数/% | |
N2 | 76.30 |
CO2 | 6.00 |
O2 | 5.90 |
H2O | 11.80 |
Table 3 Inlet conditions and composition of exhaust gas waste heat[28]
参数 | 数值 |
---|---|
温度/℃ | 87.50 |
压力/kPa | 300.00 |
摩尔分数/% | |
N2 | 76.30 |
CO2 | 6.00 |
O2 | 5.90 |
H2O | 11.80 |
工质 | 化学式 | 正常沸点/℃ |
---|---|---|
甲烷 | CH4 | -161.50 |
R1150 | C2H4 | -103.70 |
R170 | C2H6 | -88.60 |
R1270 | C3H6 | -47.70 |
R290 | C3H8 | -42.170 |
R600a | iC4H10 | -12.40 |
R600 | nC4H10 | -0.50 |
Table 4 Thermodynamic properties of the substances[29]
工质 | 化学式 | 正常沸点/℃ |
---|---|---|
甲烷 | CH4 | -161.50 |
R1150 | C2H4 | -103.70 |
R170 | C2H6 | -88.60 |
R1270 | C3H6 | -47.70 |
R290 | C3H8 | -42.170 |
R600a | iC4H10 | -12.40 |
R600 | nC4H10 | -0.50 |
编号 | 气相分数 | 温度/℃ | 压力/ kPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/ (kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
LNG | 0 | -162.00 | 200.00 | 1002.52 | 18000.00 | -5143.90 | 4.19 | 961.43 |
L1 | 0 | -161.63 | 1000.00 | 1002.52 | 18000.00 | -5141.73 | 4.19 | 961.93 |
L2 | 0.47 | -120.00 | 1000.00 | 1002.52 | 18000.00 | -4831.14 | 6.38 | 621.57 |
L3 | 0.94 | -84.65 | 1000.00 | 1002.52 | 18000.00 | -4555.77 | 8.06 | 395.06 |
L4 | 1.00 | -61.32 | 1000.00 | 1002.52 | 18000.00 | -4454.77 | 8.56 | 345.81 |
NG | 1.00 | 20.00 | 1000.00 | 1002.52 | 18000.00 | -4280.79 | 9.26 | 312.76 |
1 | 1.00 | -90.69 | 3600.00 | 723.06 | 11600.00 | -5049.65 | 8.01 | 643.00 |
2 | 0.83 | -110.35 | 1800.00 | 723.06 | 11600.00 | -5077.63 | 8.05 | 602.21 |
3 | 0 | -156.58 | 1800.00 | 723.06 | 11600.00 | -5559.58 | 4.90 | 1058.77 |
4 | 0 | -155.64 | 3600.00 | 723.06 | 11600.00 | -5554.20 | 4.91 | 1060.13 |
5 | 0 | -75.07 | 200.00 | 335.63 | 10092.12 | -3448.63 | 4.02 | 326.67 |
6 | 0 | -74.55 | 1000.00 | 335.63 | 10092.12 | -3446.72 | 4.02 | 327.81 |
7 | 1.00 | 0.00 | 1000.00 | 335.63 | 10092.12 | -2880.52 | 6.40 | 184.45 |
8 | 1.00 | -60.83 | 200.00 | 335.63 | 10092.12 | -2957.47 | 6.49 | 79.63 |
9 | 0 | -42.75 | 100.00 | 90.71 | 4000.00 | -2916.64 | 4.09 | 137.17 |
10 | 0 | -42.33 | 800.00 | 90.71 | 4000.00 | -2915.13 | 4.09 | 138.18 |
11 | 1.00 | 40.00 | 800.00 | 90.71 | 4000.00 | -2381.88 | 5.98 | 110.02 |
12 | 1.00 | -20.83 | 100.00 | 90.71 | 4000.00 | -2462.14 | 6.06 | 5.38 |
13 | 0 | -32.14 | 1000.00 | 249.42 | 7500.00 | -3333.46 | 4.53 | 287.45 |
14 | 0 | -31.12 | 2000.00 | 249.42 | 7500.00 | -3330.76 | 4.54 | 289.33 |
15 | 1.00 | 15.00 | 2000.00 | 249.42 | 7500.00 | -2879.30 | 6.24 | 232.53 |
16 | 1.00 | -18.10 | 1000.00 | 249.42 | 7500.00 | -2913.17 | 6.28 | 188.67 |
flue gas | 1.00 | 87.50 | 300.00 | 1391.45 | 39000.00 | -1794.50 | 5.55 | 108.56 |
F1 | 0.98 | 68.16 | 300.00 | 1391.45 | 39000.00 | -1849.19 | 5.40 | 100.93 |
F2 | 1.00 | 68.16 | 300.00 | 1360.65 | 38445.07 | -1649.26 | 5.42 | 102.21 |
F3 | 0.92 | 39.01 | 300.00 | 1360.65 | 38445.07 | -1797.89 | 4.97 | 88.31 |
F4 | 1.00 | 39.01 | 300.00 | 1257.29 | 36582.82 | -1083.83 | 5.06 | 92.64 |
F5 | 0.98 | -9.21 | 300.00 | 1257.29 | 36582.82 | -1169.43 | 4.77 | 94.67 |
F6 | 1.00 | -9.21 | 300.00 | 1228.51 | 36064.20 | -955.74 | 4.80 | 93.70 |
F7 | 0.94 | -131.07 | 300.00 | 1228.51 | 36064.20 | -1118.02 | 3.93 | 191.85 |
F8 | 0.00 | -131.07 | 300.00 | 74.26 | 3228.13 | -9520.99 | 0.98 | 319.51 |
F9 | 1.00 | -131.07 | 300.00 | 1154.25 | 32836.07 | -291.92 | 4.22 | 160.90 |
F10 | 1.00 | -37.15 | 300.00 | 1154.25 | 32836.07 | -195.93 | 4.74 | 102.24 |
tail gas | 1.00 | 20.00 | 300.00 | 1154.25 | 32836.07 | -137.17 | 4.96 | 94.54 |
H1 | 0 | 68.16 | 300.00 | 30.80 | 554.93 | -15699.92 | 3.57 | 12.57 |
H2 | 0 | 39.01 | 300.00 | 103.36 | 1862.24 | -15825.32 | 3.18 | 1.62 |
H3 | 0 | -9.21 | 300.00 | 28.78 | 518.63 | -16029.15 | 2.46 | 9.41 |
CW-IN-1 | 0 | 25.00 | 100.00 | 2419.32 | 43584.35 | -15887.82 | 2.98 | 0.00 |
CW-OUT-1 | 0 | 7.00 | 100.00 | 2419.32 | 43584.35 | -15965.51 | 2.71 | 2.44 |
CW-IN-2 | 0 | 25.00 | 100.00 | 1378.59 | 24835.47 | -15887.82 | 2.98 | 0 |
CW-OUT-2 | 0 | 7.00 | 100.00 | 1378.59 | 24835.47 | -15965.51 | 2.71 | 2.44 |
Table 5 Thermodynamic data of the simulated process
编号 | 气相分数 | 温度/℃ | 压力/ kPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/ (kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
LNG | 0 | -162.00 | 200.00 | 1002.52 | 18000.00 | -5143.90 | 4.19 | 961.43 |
L1 | 0 | -161.63 | 1000.00 | 1002.52 | 18000.00 | -5141.73 | 4.19 | 961.93 |
L2 | 0.47 | -120.00 | 1000.00 | 1002.52 | 18000.00 | -4831.14 | 6.38 | 621.57 |
L3 | 0.94 | -84.65 | 1000.00 | 1002.52 | 18000.00 | -4555.77 | 8.06 | 395.06 |
L4 | 1.00 | -61.32 | 1000.00 | 1002.52 | 18000.00 | -4454.77 | 8.56 | 345.81 |
NG | 1.00 | 20.00 | 1000.00 | 1002.52 | 18000.00 | -4280.79 | 9.26 | 312.76 |
1 | 1.00 | -90.69 | 3600.00 | 723.06 | 11600.00 | -5049.65 | 8.01 | 643.00 |
2 | 0.83 | -110.35 | 1800.00 | 723.06 | 11600.00 | -5077.63 | 8.05 | 602.21 |
3 | 0 | -156.58 | 1800.00 | 723.06 | 11600.00 | -5559.58 | 4.90 | 1058.77 |
4 | 0 | -155.64 | 3600.00 | 723.06 | 11600.00 | -5554.20 | 4.91 | 1060.13 |
5 | 0 | -75.07 | 200.00 | 335.63 | 10092.12 | -3448.63 | 4.02 | 326.67 |
6 | 0 | -74.55 | 1000.00 | 335.63 | 10092.12 | -3446.72 | 4.02 | 327.81 |
7 | 1.00 | 0.00 | 1000.00 | 335.63 | 10092.12 | -2880.52 | 6.40 | 184.45 |
8 | 1.00 | -60.83 | 200.00 | 335.63 | 10092.12 | -2957.47 | 6.49 | 79.63 |
9 | 0 | -42.75 | 100.00 | 90.71 | 4000.00 | -2916.64 | 4.09 | 137.17 |
10 | 0 | -42.33 | 800.00 | 90.71 | 4000.00 | -2915.13 | 4.09 | 138.18 |
11 | 1.00 | 40.00 | 800.00 | 90.71 | 4000.00 | -2381.88 | 5.98 | 110.02 |
12 | 1.00 | -20.83 | 100.00 | 90.71 | 4000.00 | -2462.14 | 6.06 | 5.38 |
13 | 0 | -32.14 | 1000.00 | 249.42 | 7500.00 | -3333.46 | 4.53 | 287.45 |
14 | 0 | -31.12 | 2000.00 | 249.42 | 7500.00 | -3330.76 | 4.54 | 289.33 |
15 | 1.00 | 15.00 | 2000.00 | 249.42 | 7500.00 | -2879.30 | 6.24 | 232.53 |
16 | 1.00 | -18.10 | 1000.00 | 249.42 | 7500.00 | -2913.17 | 6.28 | 188.67 |
flue gas | 1.00 | 87.50 | 300.00 | 1391.45 | 39000.00 | -1794.50 | 5.55 | 108.56 |
F1 | 0.98 | 68.16 | 300.00 | 1391.45 | 39000.00 | -1849.19 | 5.40 | 100.93 |
F2 | 1.00 | 68.16 | 300.00 | 1360.65 | 38445.07 | -1649.26 | 5.42 | 102.21 |
F3 | 0.92 | 39.01 | 300.00 | 1360.65 | 38445.07 | -1797.89 | 4.97 | 88.31 |
F4 | 1.00 | 39.01 | 300.00 | 1257.29 | 36582.82 | -1083.83 | 5.06 | 92.64 |
F5 | 0.98 | -9.21 | 300.00 | 1257.29 | 36582.82 | -1169.43 | 4.77 | 94.67 |
F6 | 1.00 | -9.21 | 300.00 | 1228.51 | 36064.20 | -955.74 | 4.80 | 93.70 |
F7 | 0.94 | -131.07 | 300.00 | 1228.51 | 36064.20 | -1118.02 | 3.93 | 191.85 |
F8 | 0.00 | -131.07 | 300.00 | 74.26 | 3228.13 | -9520.99 | 0.98 | 319.51 |
F9 | 1.00 | -131.07 | 300.00 | 1154.25 | 32836.07 | -291.92 | 4.22 | 160.90 |
F10 | 1.00 | -37.15 | 300.00 | 1154.25 | 32836.07 | -195.93 | 4.74 | 102.24 |
tail gas | 1.00 | 20.00 | 300.00 | 1154.25 | 32836.07 | -137.17 | 4.96 | 94.54 |
H1 | 0 | 68.16 | 300.00 | 30.80 | 554.93 | -15699.92 | 3.57 | 12.57 |
H2 | 0 | 39.01 | 300.00 | 103.36 | 1862.24 | -15825.32 | 3.18 | 1.62 |
H3 | 0 | -9.21 | 300.00 | 28.78 | 518.63 | -16029.15 | 2.46 | 9.41 |
CW-IN-1 | 0 | 25.00 | 100.00 | 2419.32 | 43584.35 | -15887.82 | 2.98 | 0.00 |
CW-OUT-1 | 0 | 7.00 | 100.00 | 2419.32 | 43584.35 | -15965.51 | 2.71 | 2.44 |
CW-IN-2 | 0 | 25.00 | 100.00 | 1378.59 | 24835.47 | -15887.82 | 2.98 | 0 |
CW-OUT-2 | 0 | 7.00 | 100.00 | 1378.59 | 24835.47 | -15965.51 | 2.71 | 2.44 |
设备 | 位号 | 计算公式 | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
泵 | P-100 | IP-100=ELNG+WP-100-EL1 | 8.34 | 99.83 |
P-101 | IP-101=E3+WP-101-E4 | 12.97 | 99.62 | |
P-102 | IP-102=E5+WP-102-E6 | 2.15 | 99.77 | |
P-103 | IP-103=E9+WP-103-E10 | 0.54 | 99.65 | |
P-104 | IP-104=E13+WP-104-E14 | 1.73 | 99.71 | |
涡轮机 | K-100 | IK-100=E1-WK-100-E2 | 41.28 | 98.01 |
K-101 | IK-101=E7-WK-101-E8 | 78.15 | 84.89 | |
K-102 | IK-102=E11-WK-102-E12 | 27.09 | 77.84 | |
K-103 | IK-103=E15-WK-103-E16 | 20.81 | 95.70 | |
换热器 | HE-100 | IHE-100= EL1+E2-EL2-E3 | 230.67 | 96.58 |
HE-101 | IHE-101= EF6+E4-EF7-E1 | 360.82 | 91.71 | |
HE-102 | IHE-102= EL2+E8-EL3-E5 | 440.05 | 86.79 | |
HE-103 | IHE-103= EF2+E6-EF3-E7 | 550.36 | 72.63 | |
HE-104 | IHE-104= EL3+E12-EL4-E9 | 99.81 | 94.96 | |
HE-105 | IHE-105= E10+EFlue gas-EF1-E11 | 113.88 | 91.44 | |
HE-106 | IHE-106= EF4+EL4-EF5-ENG | 144.58 | 94.59 | |
HE-107 | IHE-107= EF9+E16-EF10-E13 | 329.20 | 82.31 | |
HE-108 | IHE-108= E14+ECW-IN-1-E15-ECW-OUT-1 | 88.74 | 85.28 | |
HE-109 | IHE-109= EF10+ECW-IN-2-ETailgas-ECW-OUT-2 | 53.39 | 94.28 | |
分离器 | V-100 | IV-100=EF1-EF2-EH1 | 0 | 100.00 |
V-101 | IV-101=EF3-EF4-EH2 | 0.81 | 99.91 | |
V-102 | IV-102=EF5-EF6-EH3 | 22.05 | 97.71 | |
V-103 | IV-103=EF7-EF8-EF9 | 167.88 | 91.27 |
Table 6 Losses and efficiencies for each piece of equipment
设备 | 位号 | 计算公式 | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
泵 | P-100 | IP-100=ELNG+WP-100-EL1 | 8.34 | 99.83 |
P-101 | IP-101=E3+WP-101-E4 | 12.97 | 99.62 | |
P-102 | IP-102=E5+WP-102-E6 | 2.15 | 99.77 | |
P-103 | IP-103=E9+WP-103-E10 | 0.54 | 99.65 | |
P-104 | IP-104=E13+WP-104-E14 | 1.73 | 99.71 | |
涡轮机 | K-100 | IK-100=E1-WK-100-E2 | 41.28 | 98.01 |
K-101 | IK-101=E7-WK-101-E8 | 78.15 | 84.89 | |
K-102 | IK-102=E11-WK-102-E12 | 27.09 | 77.84 | |
K-103 | IK-103=E15-WK-103-E16 | 20.81 | 95.70 | |
换热器 | HE-100 | IHE-100= EL1+E2-EL2-E3 | 230.67 | 96.58 |
HE-101 | IHE-101= EF6+E4-EF7-E1 | 360.82 | 91.71 | |
HE-102 | IHE-102= EL2+E8-EL3-E5 | 440.05 | 86.79 | |
HE-103 | IHE-103= EF2+E6-EF3-E7 | 550.36 | 72.63 | |
HE-104 | IHE-104= EL3+E12-EL4-E9 | 99.81 | 94.96 | |
HE-105 | IHE-105= E10+EFlue gas-EF1-E11 | 113.88 | 91.44 | |
HE-106 | IHE-106= EF4+EL4-EF5-ENG | 144.58 | 94.59 | |
HE-107 | IHE-107= EF9+E16-EF10-E13 | 329.20 | 82.31 | |
HE-108 | IHE-108= E14+ECW-IN-1-E15-ECW-OUT-1 | 88.74 | 85.28 | |
HE-109 | IHE-109= EF10+ECW-IN-2-ETailgas-ECW-OUT-2 | 53.39 | 94.28 | |
分离器 | V-100 | IV-100=EF1-EF2-EH1 | 0 | 100.00 |
V-101 | IV-101=EF3-EF4-EH2 | 0.81 | 99.91 | |
V-102 | IV-102=EF5-EF6-EH3 | 22.05 | 97.71 | |
V-103 | IV-103=EF7-EF8-EF9 | 167.88 | 91.27 |
系统 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
ORC1 | 5765.69 | 5119.95 | 645.74 | 88.80 |
ORC2 | 4204.74 | 3134.03 | 1070.71 | 74.54 |
ORC3 | 3153.00 | 2911.68 | 241.32 | 92.35 |
ORC4 | 1473.18 | 1032.70 | 440.48 | 70.10 |
CO2捕集 | 7786.64 | 6043.68 | 1742.96 | 77.62 |
LNG气化 | 7929.08 | 7005.63 | 923.45 | 88.35 |
整个系统 | 6024.05 | 3228.76 | 2795.29 | 53.60 |
Table 7 Losses and efficiencies of the systems
系统 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
ORC1 | 5765.69 | 5119.95 | 645.74 | 88.80 |
ORC2 | 4204.74 | 3134.03 | 1070.71 | 74.54 |
ORC3 | 3153.00 | 2911.68 | 241.32 | 92.35 |
ORC4 | 1473.18 | 1032.70 | 440.48 | 70.10 |
CO2捕集 | 7786.64 | 6043.68 | 1742.96 | 77.62 |
LNG气化 | 7929.08 | 7005.63 | 923.45 | 88.35 |
整个系统 | 6024.05 | 3228.76 | 2795.29 | 53.60 |
组分 | F8 | F9 | ||
---|---|---|---|---|
摩尔流量/ (kmol/h) | 摩尔 分数/ % | 摩尔流量/ (kmol/h) | 摩尔 分数/ % | |
N2 | 0.4010 | 0.54 | 1061.2712 | 91.94 |
CO2 | 72.5341 | 97.67 | 10.9368 | 0.95 |
O2 | 0.0531 | 0.07 | 82.0424 | 7.11 |
H2O | 1.2762 | 1.72 | 0 | 0 |
Table 8 Molar composition of flow stocks F8 and F9
组分 | F8 | F9 | ||
---|---|---|---|---|
摩尔流量/ (kmol/h) | 摩尔 分数/ % | 摩尔流量/ (kmol/h) | 摩尔 分数/ % | |
N2 | 0.4010 | 0.54 | 1061.2712 | 91.94 |
CO2 | 72.5341 | 97.67 | 10.9368 | 0.95 |
O2 | 0.0531 | 0.07 | 82.0424 | 7.11 |
H2O | 1.2762 | 1.72 | 0 | 0 |
设备位号 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 换热 效率/% |
---|---|---|---|---|
HE-100 | 6750.12 | 6519.45 | 230.67 | 96.58 |
HE-101 | 4354.65 | 3993.83 | 360.82 | 91.71 |
HE-102 | 3331.10 | 2891.05 | 440.05 | 86.79 |
HE-103 | 2010.50 | 1460.14 | 550.36 | 72.63 |
HE-104 | 1981.26 | 1881.45 | 99.81 | 94.96 |
HE-105 | 1329.59 | 1215.71 | 113.88 | 91.44 |
HE-106 | 2670.43 | 2525.86 | 144.58 | 94.59 |
HE-107 | 1860.63 | 1531.43 | 329.20 | 82.31 |
HE-108 | 602.75 | 514.00 | 88.74 | 85.28 |
HE-109 | 932.56 | 879.17 | 53.39 | 94.28 |
Table 9 Heat transfer efficiency of heat exchangers
设备位号 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 换热 效率/% |
---|---|---|---|---|
HE-100 | 6750.12 | 6519.45 | 230.67 | 96.58 |
HE-101 | 4354.65 | 3993.83 | 360.82 | 91.71 |
HE-102 | 3331.10 | 2891.05 | 440.05 | 86.79 |
HE-103 | 2010.50 | 1460.14 | 550.36 | 72.63 |
HE-104 | 1981.26 | 1881.45 | 99.81 | 94.96 |
HE-105 | 1329.59 | 1215.71 | 113.88 | 91.44 |
HE-106 | 2670.43 | 2525.86 | 144.58 | 94.59 |
HE-107 | 1860.63 | 1531.43 | 329.20 | 82.31 |
HE-108 | 602.75 | 514.00 | 88.74 | 85.28 |
HE-109 | 932.56 | 879.17 | 53.39 | 94.28 |
文献 | 㶲效率/% | CO2捕获量/(kg/t) | 发电量/(kWh/t) |
---|---|---|---|
本文 | 53.60 | 177.30 | 25.86 |
[ | 25.70 | — | 24.00 |
[ | 38.90 | — | 84.00 |
[ | 51.60 | 114.70 | 380.70 |
[ | 50.00 | 27.59 | 836.00 |
Table 10 Comparison of system results
文献 | 㶲效率/% | CO2捕获量/(kg/t) | 发电量/(kWh/t) |
---|---|---|---|
本文 | 53.60 | 177.30 | 25.86 |
[ | 25.70 | — | 24.00 |
[ | 38.90 | — | 84.00 |
[ | 51.60 | 114.70 | 380.70 |
[ | 50.00 | 27.59 | 836.00 |
项目 | 数值 |
---|---|
总资本成本/USD | 4400120.00 |
总运营成本/(USD/a) | 1068030.00 |
公用工程总成本/发(USD/a) | 33760.00 |
设备总成本/USD | 1234000.00 |
期望回报率/(%/a) | 20.00 |
Table 11 System economic analysis
项目 | 数值 |
---|---|
总资本成本/USD | 4400120.00 |
总运营成本/(USD/a) | 1068030.00 |
公用工程总成本/发(USD/a) | 33760.00 |
设备总成本/USD | 1234000.00 |
期望回报率/(%/a) | 20.00 |
设备名称 | 设备位号 | 设备成本/USD | 设备质量/LB | 公用工程成本/(USD/h) |
---|---|---|---|---|
涡轮机 | K-100 | 149000.00 | 9200.00 | 0 |
K-101 | 211000.00 | 10400.00 | 0 | |
K-102 | 148500.00 | 9300.00 | 0 | |
K-103 | 139300.00 | 9000.00 | 0 | |
泵 | P-100 | 26400.00 | 1600.00 | 1.16 |
P-101 | 73300.00 | 3200.00 | 1.73 | |
P-102 | 23200.00 | 1300.00 | 0.58 | |
P-103 | 21400.00 | 1000.00 | 0.17 | |
P-104 | 54200.00 | 2000.00 | 0.58 | |
分离器 | V-100 | 35800.00 | 4900.00 | 0 |
V-101 | 35800.00 | 4900.00 | 0 | |
V-102 | 34700.00 | 4600.00 | 0 | |
V-103 | 27000.00 | 3300.00 | 0 | |
换热器 | E-100 | 34200.00 | 5800.00 | 0 |
E-101 | 17400.00 | 3000.00 | 0 | |
E-102 | 57200.00 | 9700.00 | 0 | |
E-103 | 31700.00 | 5400.00 | 0 | |
E-104 | 21600.00 | 3700.00 | 0 | |
E-105 | 13200.00 | 2300.00 | 0 | |
E-106 | 13300.00 | 2300.00 | 0 | |
E-107 | 20100.00 | 3400.00 | 0 | |
E-108 | 30400.00 | 5200.00 | 0 | |
E-109 | 15300.00 | 2600.00 | 0 |
Table 12 Equipment specific costs
设备名称 | 设备位号 | 设备成本/USD | 设备质量/LB | 公用工程成本/(USD/h) |
---|---|---|---|---|
涡轮机 | K-100 | 149000.00 | 9200.00 | 0 |
K-101 | 211000.00 | 10400.00 | 0 | |
K-102 | 148500.00 | 9300.00 | 0 | |
K-103 | 139300.00 | 9000.00 | 0 | |
泵 | P-100 | 26400.00 | 1600.00 | 1.16 |
P-101 | 73300.00 | 3200.00 | 1.73 | |
P-102 | 23200.00 | 1300.00 | 0.58 | |
P-103 | 21400.00 | 1000.00 | 0.17 | |
P-104 | 54200.00 | 2000.00 | 0.58 | |
分离器 | V-100 | 35800.00 | 4900.00 | 0 |
V-101 | 35800.00 | 4900.00 | 0 | |
V-102 | 34700.00 | 4600.00 | 0 | |
V-103 | 27000.00 | 3300.00 | 0 | |
换热器 | E-100 | 34200.00 | 5800.00 | 0 |
E-101 | 17400.00 | 3000.00 | 0 | |
E-102 | 57200.00 | 9700.00 | 0 | |
E-103 | 31700.00 | 5400.00 | 0 | |
E-104 | 21600.00 | 3700.00 | 0 | |
E-105 | 13200.00 | 2300.00 | 0 | |
E-106 | 13300.00 | 2300.00 | 0 | |
E-107 | 20100.00 | 3400.00 | 0 | |
E-108 | 30400.00 | 5200.00 | 0 | |
E-109 | 15300.00 | 2600.00 | 0 |
15 | Sun Q X, Wang Y X, Cheng Z Y, et al. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source[J]. Renewable Energy, 2020, 147: 2822-2832. |
16 | Zhang X L, Zhang T, Xue X D, et al. A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin[J]. Frontiers in Energy, 2020, 14(4): 889-900. |
17 | 2022年全球能源部门二氧化碳排放创纪录[J].中外能源, 2023, 28(10): 97. |
In 2022, the global energy sector recorded a record carbon dioxide emission[J]. Sino-Global Energy, 2023, 28(10): 97. | |
18 | Lin W S, Huang M B, He H M, et al. A transcritical CO2 Rankine cycle with LNG cold energy utilization and liquefaction of CO2 in gas turbine exhaust[J]. Journal of Energy Resources Technology, 2009, 131(4): 042201. |
19 | Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J]. Energy, 2006, 31(10/11): 1666-1679. |
20 | Kanbur B B, Xiang L M, Dubey S, et al. Mitigation of carbon dioxide emission using liquefied natural gas cold energy in small scale power generation systems[J]. Journal of Cleaner Production, 2018, 200: 982-995. |
21 | Xu J X, Lin W S. A CO2 cryogenic capture system for flue gas of an LNG-fired power plant[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18674-18680. |
22 | Kim Y, Lee J, Cho H, et al. Novel cryogenic carbon dioxide capture and storage process using LNG cold energy in a natural gas combined cycle power plant[J]. Chemical Engineering Journal, 2023, 456: 140980. |
23 | Wang H, Shi X J, Che D F. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Applied Thermal Engineering, 2013, 59(1/2): 490-497. |
24 | Ouyang T C, Tan J Q, Wu W C, et al. Energy, exergy and economic benefits deriving from LNG-fired power plant: cold energy power generation combined with carbon dioxide capture[J]. Renewable Energy, 2022, 195: 214-229. |
25 | Zhao L, Dong H, Tang J J, et al. Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2016, 105: 45-56. |
1 | Ali Nasir M, Canh N P, Lan Le T N. Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalisation[J]. Journal of Environmental Management, 2021, 277: 111471. |
2 | Wang H L, He J K. China's pre-2020 CO2 emission reduction potential and its influence[J]. Frontiers in Energy, 2019, 13(3): 571-578. |
3 | 徐健玮, 梁颖宗, 罗向龙, 等. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444. |
Xu J W, Liang Y Z, Luo X L, et al. Integration and analysis of PRICO-membrane distillation seawater desalination system[J]. CIESC Journal, 2021, 72(S1): 437-444. | |
4 | Le S, Lee J Y, Chen C L. Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy[J]. Energy, 2018, 152: 770-787. |
5 | Song R, Cui M M, Liu J J. Single and multiple objective optimization of a natural gas liquefaction process[J]. Energy, 2017, 124: 19-28. |
6 | Wang B J, Wang W, Qi C, et al. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Frontiers in Energy, 2020, 14(3): 452-462. |
7 | 杜旭, 陈煜, 巨永林. 液化天然气(LNG)的长距离输送及其冷能利用[J]. 化工学报, 2018, 69(S2): 442-449. |
Du X, Chen Y, Ju Y L. Long-distance transportation of liquefied natural gas (LNG) and cold energy utilization[J]. CIESC Journal, 2018, 69(S2): 442-449. | |
8 | Kanbur B B, Xiang L M, Dubey S, et al. Cold utilization systems of LNG: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1171-1188. |
9 | Ghaebi H, Parikhani T, Rostamzadeh H. Energy, exergy and thermoeconomic analysis of a novel combined cooling and power system using low-temperature heat source and LNG cold energy recovery[J]. Energy Conversion and Management, 2017, 150: 678-692. |
10 | Lee U, Park K, Jeong Y S, et al. Design and analysis of a combined Rankine cycle for waste heat recovery of a coal power plant using LNG cryogenic exergy[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9812-9824. |
26 | Dauber F, Span R. Modelling liquefied-natural-gas processes using highly accurate property models[J]. Applied Energy, 2012, 97: 822-827. |
27 | Dong H, Zhao L, Zhang S Y, et al. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle[J]. Energy, 2013, 63: 10-18. |
28 | Ma J, Song X D, Zhang B, et al. Optimal design of dual-stage combined cycles to recover LNG cold energy and low-temperature waste thermal energy for sustainable power generation[J]. Energy Conversion and Management, 2022, 269: 116141. |
29 | Wang X, Zhao L, Zhang L H, et al. A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2019, 187: 115963. |
30 | 何翠兰. 基于HYSYS的LNG冷电联产工艺研究[D]. 成都: 西南石油大学, 2018. |
He C L. Study on LNG cogeneration process based on HYSYS[D]. Chengdu: Southwest Petroleum University, 2018. | |
31 | Xiong Y Q, Luo P, Hua B. A novel CO2-capturing natural gas combined cycle with LNG cold energy utilization[J]. Energy Procedia, 2014, 61: 899-903. |
11 | Bao J J, Lin Y, Zhang R X, et al. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system[J]. Energy Conversion and Management, 2017, 143: 312-325. |
12 | Sun H, Zhu H M, Liu F, et al. Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid[J]. Energy, 2014, 70: 317-324. |
13 | Xue F E, Chen Y, Ju Y L. Design and optimization of a novel cryogenic Rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas (LNG)[J]. Energy, 2017, 138: 706-720. |
14 | Bao J J, Zhang R X, Yuan T, et al. A simultaneous approach to optimize the component and composition of zeotropic mixture for power generation systems[J]. Energy Conversion and Management, 2018, 165: 354-362. |
[1] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[2] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
[3] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[4] | Di WANG, Yinghan CUI, Lingfang SUN, Yunlong ZHOU. Thermodynamic analysis of supercritical carbon dioxide mixed working fluid energy storage system [J]. CIESC Journal, 2024, 75(10): 3414-3423. |
[5] | Qiong SUN, Fuxin YANG, Houzhang TAN, Xiaopo WANG. Simulation study of CO2 capture from flue gas by deep eutectic solvent [J]. CIESC Journal, 2024, 75(10): 3705-3717. |
[6] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[9] | Xiaolin GAO, Changguo CHEN. A study on production of silica from CO2 mineralization by wollastonite promoted via air-driven membrane electrolysis technology [J]. CIESC Journal, 2023, 74(11): 4739-4748. |
[10] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[11] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[12] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[13] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[14] | Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant [J]. CIESC Journal, 2022, 73(11): 5065-5077. |
[15] | Xianhui ZHU, Fu WANG, Jiecheng XIA, Jinliang YUAN. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids [J]. CIESC Journal, 2022, 73(10): 4324-4334. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||