CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 256-265.DOI: 10.11949/0438-1157.20240784
• Process system engineering • Previous Articles Next Articles
Chao REN(), Kai WANG(
), Jie HAN, Chunhua YANG
Received:
2024-07-11
Revised:
2024-08-03
Online:
2025-02-08
Published:
2025-01-25
Contact:
Kai WANG
通讯作者:
王凯
作者简介:
任超(1998—),男,博士研究生,renchao_aapc@126.com
基金资助:
CLC Number:
Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method[J]. CIESC Journal, 2025, 76(1): 256-265.
任超, 王凯, 韩洁, 阳春华. 事件-时间触发的慢时变工业过程动态调度方法[J]. 化工学报, 2025, 76(1): 256-265.
参数 | 热流 | 冷流 | ||
---|---|---|---|---|
H1 | H2 | C1 | C2 | |
质量流量/(kg·s-1) | 50 | 40 | 30 | 200 |
输入温度/K | 423 | 443 | 323 | 353 |
目标出口温度/K | 323 | 313 | 393 | 383 |
比热容/(J·kg-1·K-1) | 4000 | 2500 | 1000 | 2500 |
黏度/(mPa·s) | 0.25 | 1.2 | 1.2 | 2 |
Table 1 Flow data of heat exchanger network
参数 | 热流 | 冷流 | ||
---|---|---|---|---|
H1 | H2 | C1 | C2 | |
质量流量/(kg·s-1) | 50 | 40 | 30 | 200 |
输入温度/K | 423 | 443 | 323 | 353 |
目标出口温度/K | 323 | 313 | 393 | 383 |
比热容/(J·kg-1·K-1) | 4000 | 2500 | 1000 | 2500 |
黏度/(mPa·s) | 0.25 | 1.2 | 1.2 | 2 |
触发机制 | 描 述 |
---|---|
EET | 操作变量持续调节,直至到达边界值 |
HPET | 融合时间触发与预设性能事件触发的方法 |
HDET | 融合时间触发与动态事件触发的方法 |
Table 2 Comparison of three triggering mechanisms
触发机制 | 描 述 |
---|---|
EET | 操作变量持续调节,直至到达边界值 |
HPET | 融合时间触发与预设性能事件触发的方法 |
HDET | 融合时间触发与动态事件触发的方法 |
1 | Binazadeh T, Shafiei M H. Robust stabilization of uncertain nonlinear slowly-varying systems: application in a time-varying inertia pendulum[J]. ISA Transactions, 2014, 53(2): 373-379. |
2 | Xie F M, Xu F, Liang Z S, et al. Full cycle dynamic optimisation maintaining the operation margin of acetylene hydrogenation fixed-bed reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 29-42. |
3 | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
4 | 陈春波, 罗雄麟, 孙琳. 多效蒸发海水淡化系统可行域时变分析与全周期操作优化[J]. 化工学报, 2021, 72(11): 5686-5695. |
Chen C B, Luo X L, Sun L. Time-varying analysis of feasible region and full-cycle operating optimization in multi-effect distillation seawater desalination system[J]. CIESC Journal, 2021, 72(11): 5686-5695. | |
5 | 王天媛, 陈春波, 孙琳, 等. 基于全周期缓慢结垢的多效蒸发海水淡化慢时变系统优化设计[J]. 化工学报, 2022, 73(2): 759-769. |
Wang T Y, Chen C B, Sun L, et al. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling[J]. CIESC Journal, 2022, 73(2): 759-769. | |
6 | Markowski M, Trafczynski M, Urbaniec K. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers[J]. Energy Conversion and Management, 2013, 76: 307-313. |
7 | Patil P, Srinivasan B, Srinivasan R. Monitoring fouling in heat exchangers under temperature control based on excess thermal and hydraulic loads[J]. Chemical Engineering Research and Design, 2022, 181: 41-54. |
8 | Trafczynski M, Markowski M, Urbaniec K. Energy saving and pollution reduction through optimal scheduling of cleaning actions in a heat exchanger network[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113072. |
9 | 任超, 孙琳, 罗雄麟. 换热器因应结垢慢时变的控制系统重构分析[J]. 化工学报, 2021, 72(10): 5273-5283. |
Ren C, Sun L, Luo X L. Analysis on the reconfiguration of the control system of the heat exchanger in response to the slow and time-varying fouling[J]. CIESC Journal, 2021, 72(10): 5273-5283. | |
10 | Cao X Y, Xu F, Luo X L. A novel strategy of continuous process transition and wide range throughput fluctuating ethylene column[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121: 61-73. |
11 | Yang D, Li X D, Qiu J L. Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback[J]. Nonlinear Analysis: Hybrid Systems, 2019, 32: 294-305. |
12 | Liu H, Shen Y, Zhao X D. Finite-time stabilization and boundedness of switched linear system under state-dependent switching[J]. Journal of the Franklin Institute, 2013, 350(3): 541-555. |
13 | Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. |
14 | Linsenmayer S, Dimarogonas D V, Allgöwer F. Event-based vehicle coordination using nonlinear unidirectional controllers[J]. IEEE Transactions on Control of Network Systems, 2018, 5(4): 1575-1584. |
15 | Ge X H, Han Q L, Ding L, et al. Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3112-3125. |
16 | Wen S X, Guo G, Wong W S. Hybrid event-time-triggered networked control systems: scheduling-event-control co-design[J]. Information Sciences, 2015, 305: 269-284. |
17 | Hu B, Guan Z H, Chen G R, et al. A distributed hybrid event-time-driven scheme for optimization over sensor networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7199-7208. |
18 | Touretzky C R, Harjunkoski I, Baldea M. Dynamic models and fault diagnosis-based triggers for closed-loop scheduling[J]. AIChE Journal, 2017, 63(6): 1959-1973. |
19 | Engell S, Harjunkoski I. Optimal operation: scheduling, advanced control and their integration[J]. Computers & Chemical Engineering, 2012, 47: 121-133. |
20 | Pistikopoulos E N, Diangelakis N A. Towards the integration of process design, control and scheduling: are we getting closer?[J]. Computers & Chemical Engineering, 2016, 91: 85-92. |
21 | Du J, Park J, Harjunkoski I, et al. A time scale-bridging approach for integrating production scheduling and process control[J]. Computers & Chemical Engineering, 2015, 79: 59-69. |
22 | Tsay C, Baldea M. Integrating production scheduling and process control using latent variable dynamic models[J]. Control Engineering Practice, 2020, 94: 104201. |
23 | Charitopoulos V M, Papageorgiou L G, Dua V. Closed-loop integration of planning, scheduling and multi-parametric nonlinear control[J]. Computers & Chemical Engineering, 2019, 122: 172-192. |
24 | Sun L, Ren C, Luo X L. Online control system reconfiguration towards long period energy-saving optimization of heat exchanger networks[J]. Journal of Cleaner Production, 2022, 367: 132940. |
25 | Ren C, Sun L, Xu F, et al. Full cycle on-line autonomous reconfiguration of MIMO control system based on REGA pairing principle for heat exchanger networks[J]. Journal of Process Control, 2023, 130: 103081. |
26 | 谢府命, 许锋, 罗雄麟. 慢时变化工过程裕量释放机制分析[J]. 化工学报, 2020, 71(S2): 216-224. |
Xie F M, Xu F, Luo X L. Release mechanism analysis of design margin for slowly-time-varying chemical processes[J]. CIESC Journal, 2020, 71(S2): 216-224. | |
27 | Shafiei M H, Yazdanpanah M J. Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function[J]. ISA Transactions, 2010, 49(2): 215-221. |
28 | Binazadeh T, Shafiei M H. Extending satisficing control strategy to slowly varying nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 1071-1078. |
29 | Binder T, Cruse A, Cruz Villar C A, et al. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 1201-1207. |
30 | Ouyang H P, Lin Y. Adaptive fault-tolerant control for actuator failures: a switching strategy[J]. Automatica, 2017, 81: 87-95. |
31 | Ouyang H P, Lin Y. Adaptive fault-tolerant control and performance recovery against actuator failures with deferred actuator replacement[J]. IEEE Transactions on Automatic Control, 2021, 66(8): 3810-3817. |
32 | Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5): 1220-1226. |
33 | Wang W, Wen C Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance[J]. Automatica, 2010, 46(12): 2082-2091. |
34 | Hang P, Zhao L W, Liu G L. Optimal design of heat exchanger network considering the fouling throughout the operating cycle[J]. Energy, 2022, 241: 122913. |
35 | Sun L, Zha X L, Luo X L. Coordination between bypass control and economic optimization for heat exchanger network[J]. Energy, 2018, 160: 318-329. |
36 | Abuhalima O, Sun L, Chang R X, et al. Synthesis of a multipass heat exchanger network based on life cycle energy saving[J]. Applied Thermal Engineering, 2016, 100: 1189-1197. |
[1] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[2] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
[3] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
[4] | Siqi LIU, Zhikang YI, Yuan XIAO, Huanhuan DUAN, Guomin CUI. Simultaneous optimization of combined heat and mass exchange network synthesis considering lean stream bypass [J]. CIESC Journal, 2024, 75(12): 4666-4678. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[8] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG, Wei ZHANG, Jiazhou LI. Thermodynamic analysis of CO2 near-zero-emission power system with integrated solar energy, supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(11): 4688-4701. |
[12] | Liwen ZHAO, Guilian LIU. Load-shift laws and bottleneck identification strategy of disturbed heat exchanger network [J]. CIESC Journal, 2023, 74(11): 4611-4621. |
[13] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[14] | Ling YANG, Guomin CUI, Zhiqiang ZHOU, Yuan XIAO. Fine search strategy applied to mass exchange network synthesis [J]. CIESC Journal, 2022, 73(7): 3145-3155. |
[15] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||