CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1253-1263.DOI: 10.11949/0438-1157.20240794
• Energy and environmental engineering • Previous Articles
Fang XU1(), Rui ZHANG2, Da CUI2, Qing WANG2(
)
Received:
2024-07-15
Revised:
2024-09-11
Online:
2025-03-28
Published:
2025-03-25
Contact:
Qing WANG
通讯作者:
王擎
作者简介:
徐芳(1986—),女,博士,讲师,xufang0122@126.com
基金资助:
CLC Number:
Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation[J]. CIESC Journal, 2025, 76(3): 1253-1263.
徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263.
温度/K | 一次反应率/% | 生物油产率/% | 热解气产率/% |
---|---|---|---|
1200 | 1.77 | 1.23 | 0.54 |
1400 | 30.22 | 25.74 | 4.48 |
1600 | 68.31 | 60.45 | 7.86 |
1800 | 92.18 | 79.52 | 12.66 |
Table 1 Degree of primary decomposition reaction of lignin at low temperatures
温度/K | 一次反应率/% | 生物油产率/% | 热解气产率/% |
---|---|---|---|
1200 | 1.77 | 1.23 | 0.54 |
1400 | 30.22 | 25.74 | 4.48 |
1600 | 68.31 | 60.45 | 7.86 |
1800 | 92.18 | 79.52 | 12.66 |
温度/K | 12.5 ps一次 反应率/% | 25 ps一次 反应率/% | 一次反应 大约时间/ps |
---|---|---|---|
2200 | 67.76 | 82.48 | 200 |
2400 | 88.34 | 92.34 | 50 |
2600 | 91.06 | 97.40 | 25 |
2800 | 95.88 | 98.77 | 25 |
Table 2 Degree of primary decomposition reaction of lignin at high temperatures
温度/K | 12.5 ps一次 反应率/% | 25 ps一次 反应率/% | 一次反应 大约时间/ps |
---|---|---|---|
2200 | 67.76 | 82.48 | 200 |
2400 | 88.34 | 92.34 | 50 |
2600 | 91.06 | 97.40 | 25 |
2800 | 95.88 | 98.77 | 25 |
温度/K | 二次反应率/% | 焦炭转化率/% | 热解气产率/% |
---|---|---|---|
2200 | 12.34 | 78.77 | 21.23 |
2400 | 21.99 | 68.34 | 31.66 |
2600 | 37.50 | 62.36 | 37.64 |
2800 | 69.54 | 69.87 | 30.13 |
Table 3 Degree of secondary reaction of bio-oil at high temperatures
温度/K | 二次反应率/% | 焦炭转化率/% | 热解气产率/% |
---|---|---|---|
2200 | 12.34 | 78.77 | 21.23 |
2400 | 21.99 | 68.34 | 31.66 |
2600 | 37.50 | 62.36 | 37.64 |
2800 | 69.54 | 69.87 | 30.13 |
1 | Wang S Q, Wan Z, Han Y, et al. A review on lignin waste valorization by catalytic pyrolysis: catalyst, reaction system, and industrial symbiosis mode[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109113. |
2 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
3 | Jiang W K, Chu J Y, Wu S B, et al. Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers[J]. Fuel Processing Technology, 2018, 176: 221-229. |
4 | 徐芳. 霍林河褐煤分子模型构建及其热解反应分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Xu F. Construction of molecular model of Huolinhe lignite and study on the pyrolysis reaction by molecular dynamics simulations[D]. Harbin: Harbin Institute of Technology, 2020. | |
5 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
6 | Shen D K, Liu G F, Zhao J, et al. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 56-65. |
7 | 段毓. 木质素模型化合物活性基团的调变对其热解历程的影响研究[D]. 广州: 华南理工大学, 2020. |
Duan Y. Study on the effect of modification of functional group of lignin model compound on its pyrolysis process[D]. Guangzhou: South China University of Technology, 2020. | |
8 | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
9 | Zhao D, Feng H Y, Wang Y, et al. Influence mechanism of K on cellulose pyrolysis by stepwise isothermal method in situ DRIFTS method[J]. Fuel, 2024, 360: 130601. |
10 | Kawamoto H. Lignin pyrolysis reactions[J]. Journal of Wood Science, 2017, 63(2): 117-132. |
11 | 马浩. 木质素热解过程中含氧官能团的演化规律及其对木质素热解特性的影响[D]. 广州: 华南理工大学, 2020. |
Ma H. Evolution of oxygen-containing functional groups during lignin pyrolysis and its effect on lignin pyrolysis[D]. Guangzhou: South China University of Technology, 2020. | |
12 | Yogalakshmi K N, Poornima D T, Sivashanmugam P, et al. Lignocellulosic biomass-based pyrolysis: a comprehensive review[J]. Chemosphere, 2022, 286: 131824. |
13 | Li P H, Ren J P, Jiang Z W, et al. Review on the preparation of fuels and chemicals based on lignin[J]. RSC Advances, 2022, 12(17): 10289-10305. |
14 | Wang C Y, Xia S P, Cui C X, et al. Investigation into the correlation between the chemical structure of lignin and its temperature-dependent pyrolytic product evolution[J]. Fuel, 2022, 329: 125215. |
15 | Fan L L, Zhang Y N, Liu S Y, et al. Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters[J]. Bioresource Technology, 2017, 241: 1118-1126. |
16 | Jiang G Z, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis[J]. Thermochimica Acta, 2010, 498(1/2): 61-66. |
17 | He T, Zhang Y M, Zhu Y N, et al. Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 2204-2208. |
18 | Jiang X Y, Lu Q, Hu B, et al. Intermolecular interaction mechanism of lignin pyrolysis: a joint theoretical and experimental study[J]. Fuel, 2018, 215: 386-394. |
19 | 苑世领, 张恒, 张冬菊. 分子模拟: 理论与实验[M]. 北京: 化学工业出版社, 2016: 5. |
Yuan S L, Zhang H, Zhang D J. Molecular Simulation: Theory and Experiment[M]. Beijing: Chemical Industry Press, 2016: 5. | |
20 | Zheng M, Li X X, Nie F G, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13/14/15/16): 1081-1088. |
21 | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
Zheng M, Li X X. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741. | |
22 | Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal(part 2): Reactive dynamics simulations using the ReaxFF reactive force field on morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
23 | Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
24 | Chen C, Zhao L L, Wang J F, et al. Reactive molecular dynamics simulations of biomass pyrolysis and combustion under various oxidative and humidity environments[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12276-12288. |
25 | Zhang Z J, Zhang H Y, Chai J, et al. Reactive molecular dynamics simulation of oil shale combustion using the ReaxFF reactive force field[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 43(3): 349-360. |
26 | Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150. |
27 | Zhang T T, Li X X, Guo L, et al. Reaction mechanisms in pyrolysis of hardwood, softwood, and kraft lignin revealed by ReaxFF MD simulations[J]. Energy & Fuels, 2019, 33(11): 11210-11225. |
28 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
29 | 洪迪昆, 翟晓明, 郭欣. H2O对O2/H2O条件下HCN氧化影响的反应分子动力学模拟[J]. 动力工程学报, 2023, 43(3): 300-306. |
Hong D K, Zhai X M, Guo X. Reaction molecular dynamics study on the effect of H2O on HCN oxidation in O2/H2O atmosphere[J]. Journal of Chinese Society of Power Engineering, 2023, 43(3): 300-306. | |
30 | Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. |
31 | Mattsson T R, Lane J M D, Cochrane K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers[J]. Physical Review B, 2010, 81(5): 054103. |
32 | Zhang T T, Li X X, Guo L. Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics[J]. Langmuir, 2017, 33(42): 11646-11657. |
33 | Chen J W, Wang C X, Shang W X, et al. Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation[J]. Energy, 2023, 278: 127900. |
34 | Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. |
35 | Zheng M, Li X X, Bai J, et al. Chemical structure effects on coal pyrolyzates and reactions by using large-scale reactive molecular dynamics[J]. Fuel, 2022, 327: 125089. |
36 | Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290. |
37 | Xu F, Liu H, Wang Q, et al. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite[J]. Fuel Processing Technology, 2019, 195: 106147. |
38 | 陈思佳. 木质素化学结构修饰对热解性能的影响[D]. 广州: 华南理工大学, 2020. |
Chen S J. Effect of lignin chemical structure modification on pyrolysis performance[D]. Guangzhou: South China University of Technology, 2020. | |
39 | Gooty A T, Li D B, Berruti F, et al. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106: 33-40. |
40 | Hong D K, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
41 | Song Y, Zhao Y J, Hu X, et al. Destruction of tar during volatile-char interactions at low temperature[J]. Fuel Processing Technology, 2018, 171: 215-222. |
42 | Mathews J P, Krishnamoorthy V, Louw E, et al. A review of the correlations of coal properties with elemental composition[J]. Fuel Processing Technology, 2014, 121: 104-113. |
43 | Lei Z, Liang Q J, Ling Q, et al. Investigating the reaction mechanism of light tar for Shenfu bituminous coal pyrolysis[J]. Energy, 2023, 263: 125731. |
44 | Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109. |
[1] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
[2] | Zhongqing LI, Zhiyuan WANG, Xiaojian LUAN, Sikai LIANG, Kai WANG. Preparation of MnO coating based on electroplating-low oxygen partial pressure treatment and coking inhibition properties during thermal cracking of naphtha [J]. CIESC Journal, 2025, 76(3): 1050-1063. |
[3] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
[4] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
[5] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[6] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
[7] | Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil [J]. CIESC Journal, 2024, 75(7): 2644-2655. |
[8] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[9] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
[10] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
[11] | Haowen LI, Hao LAN, Youdan ZHENG, Yonghui SUN, Zixin YANG, Qianshi SONG, Xiaohan WANG. Pyrolysis and coking behavior of typical liquid hydrocarbon fuels in hot pipe [J]. CIESC Journal, 2024, 75(2): 626-636. |
[12] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
[13] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[14] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[15] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||