CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 40-46.DOI: 10.11949/0438-1157.20240361
• Thermodynamics • Previous Articles Next Articles
Xiaoyu JIANG(), Huanting LUO, Rui HONG, Wenjing DU(
)
Received:
2024-04-02
Revised:
2024-05-08
Online:
2024-12-17
Published:
2024-12-25
Contact:
Wenjing DU
通讯作者:
杜文静
作者简介:
蒋晓煜(2000—),女,硕士研究生,flyback2000@163.com
基金资助:
CLC Number:
Xiaoyu JIANG, Huanting LUO, Rui HONG, Wenjing DU. Specific heat of diol coolant determined by modulated differential scanning calorimetry[J]. CIESC Journal, 2024, 75(S1): 40-46.
蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46.
温度t/℃ | 实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% | 文献值cp /(J/(g·K)) | 误差/% |
---|---|---|---|---|---|
20 | 4.076 | 4.184 | 2.58 | 4.1786 | 2.46 |
25 | 4.083 | 4.182 | 2.36 | 4.1825 | 2.37 |
30 | 4.085 | 4.180 | 2.28 | 4.1839 | 2.37 |
40 | 4.094 | 4.180 | 2.05 | 4.1752 | 1.93 |
50 | 4.106 | 4.182 | 1.82 | 4.1761 | 1.68 |
60 | 4.117 | 4.185 | 1.63 | 4.1748 | 1.39 |
70 | 4.132 | 4.190 | 1.40 | 4.1813 | 1.19 |
80 | 4.143 | 4.197 | 1.29 | 4.1899 | 1.12 |
90 | 4.162 | 4.205 | 1.02 |
Table 1 The specific heat capacity of purified water measured by experiment
温度t/℃ | 实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% | 文献值cp /(J/(g·K)) | 误差/% |
---|---|---|---|---|---|
20 | 4.076 | 4.184 | 2.58 | 4.1786 | 2.46 |
25 | 4.083 | 4.182 | 2.36 | 4.1825 | 2.37 |
30 | 4.085 | 4.180 | 2.28 | 4.1839 | 2.37 |
40 | 4.094 | 4.180 | 2.05 | 4.1752 | 1.93 |
50 | 4.106 | 4.182 | 1.82 | 4.1761 | 1.68 |
60 | 4.117 | 4.185 | 1.63 | 4.1748 | 1.39 |
70 | 4.132 | 4.190 | 1.40 | 4.1813 | 1.19 |
80 | 4.143 | 4.197 | 1.29 | 4.1899 | 1.12 |
90 | 4.162 | 4.205 | 1.02 |
温度t/℃ | 乙二醇实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% | 丙二醇实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% |
---|---|---|---|---|---|---|
20 | 2.288 | 2.347 | 2.51 | 2.513 | 2.481 | 1.29 |
Table 2 The specific heat capacity of diols measured at 20℃ by experiment
温度t/℃ | 乙二醇实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% | 丙二醇实验值cp /(J/(g·K)) | 手册值cp /(J/(g·K)) | 误差/% |
---|---|---|---|---|---|---|
20 | 2.288 | 2.347 | 2.51 | 2.513 | 2.481 | 1.29 |
冰点/℃ | 编号 | 乙二醇冷却液 浓度/% | 冰点/℃ | 编号 | 丙二醇冷却液浓度/% |
---|---|---|---|---|---|
-15 | 1 | 28.7 | -15 | 8 | 32.4 |
-20 | 2 | 34.5 | -20 | 9 | 37.5 |
-25 | 3 | 39.5 | -25 | 10 | 42.6 |
-30 | 4 | 44.5 | -30 | 11 | 46.8 |
-35 | 5 | 47.6 | -35 | 12 | 50.9 |
-40 | 6 | 51.6 | -40 | 13 | 54.0 |
-45 | 7 | 54.7 | -45 | 14 | 56.0 |
Table 3 Number of diol coolants at different freezing points
冰点/℃ | 编号 | 乙二醇冷却液 浓度/% | 冰点/℃ | 编号 | 丙二醇冷却液浓度/% |
---|---|---|---|---|---|
-15 | 1 | 28.7 | -15 | 8 | 32.4 |
-20 | 2 | 34.5 | -20 | 9 | 37.5 |
-25 | 3 | 39.5 | -25 | 10 | 42.6 |
-30 | 4 | 44.5 | -30 | 11 | 46.8 |
-35 | 5 | 47.6 | -35 | 12 | 50.9 |
-40 | 6 | 51.6 | -40 | 13 | 54.0 |
-45 | 7 | 54.7 | -45 | 14 | 56.0 |
二元醇 | 编号 | cp /(J/(g•K)) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
20℃ | 25℃ | 30℃ | 40℃ | 50℃ | 60℃ | 70℃ | 80℃ | 90℃ | ||
乙二醇 | 1 | 3.7761 | 3.7996 | 3.8187 | 3.8524 | 3.8860 | 3.9172 | 3.9475 | 3.9745 | 3.9909 |
2 | 3.6560 | 3.6815 | 3.7027 | 3.7401 | 3.7781 | 3.8093 | 3.8487 | 3.8903 | 3.9218 | |
3 | 3.5047 | 3.5361 | 3.5600 | 3.6065 | 3.6572 | 3.7003 | 3.7468 | 3.7865 | 3.8094 | |
4 | 3.5229 | 3.5494 | 3.5721 | 3.6149 | 3.6536 | 3.6900 | 3.7239 | 3.7554 | 3.7756 | |
5 | 3.4231 | 3.4495 | 3.4748 | 3.5241 | 3.5681 | 3.6098 | 3.6508 | 3.6906 | 3.7158 | |
6 | 3.3284 | 3.3622 | 3.3890 | 3.4440 | 3.4981 | 3.5510 | 3.6019 | 3.6571 | 3.7034 | |
7 | 3.2963 | 3.3281 | 3.3566 | 3.4123 | 3.4689 | 3.5296 | 3.5959 | 3.6924 | 3.7367 | |
丙二醇 | 8 | 4.0881 | 4.1096 | 4.1263 | 4.1532 | 4.1824 | 4.2107 | 4.2389 | 4.2694 | 4.2905 |
9 | 3.8612 | 3.8866 | 3.9052 | 3.9415 | 3.9748 | 4.0031 | 4.0319 | 4.0504 | 4.0556 | |
10 | 3.7629 | 3.7926 | 3.8116 | 3.8533 | 3.8924 | 3.9256 | 3.9573 | 3.9859 | 4.0098 | |
11 | 3.6879 | 3.7137 | 3.7333 | 3.7722 | 3.8087 | 3.8349 | 3.8720 | 3.8983 | 3.9158 | |
12 | 3.6837 | 3.7144 | 3.7430 | 3.7933 | 3.8433 | 3.8916 | 3.9402 | 3.9915 | 4.0364 | |
13 | 3.4050 | 3.4362 | 3.4664 | 3.5202 | 3.5753 | 3.6182 | 3.6683 | 3.7111 | 3.7468 | |
14 | 3.7051 | 3.7353 | 3.7648 | 3.8167 | 3.8697 | 3.9146 | 3.9607 | 4.0015 | 4.0322 |
Table 4 Specific heat capacity of diols coolant at different freezing points
二元醇 | 编号 | cp /(J/(g•K)) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
20℃ | 25℃ | 30℃ | 40℃ | 50℃ | 60℃ | 70℃ | 80℃ | 90℃ | ||
乙二醇 | 1 | 3.7761 | 3.7996 | 3.8187 | 3.8524 | 3.8860 | 3.9172 | 3.9475 | 3.9745 | 3.9909 |
2 | 3.6560 | 3.6815 | 3.7027 | 3.7401 | 3.7781 | 3.8093 | 3.8487 | 3.8903 | 3.9218 | |
3 | 3.5047 | 3.5361 | 3.5600 | 3.6065 | 3.6572 | 3.7003 | 3.7468 | 3.7865 | 3.8094 | |
4 | 3.5229 | 3.5494 | 3.5721 | 3.6149 | 3.6536 | 3.6900 | 3.7239 | 3.7554 | 3.7756 | |
5 | 3.4231 | 3.4495 | 3.4748 | 3.5241 | 3.5681 | 3.6098 | 3.6508 | 3.6906 | 3.7158 | |
6 | 3.3284 | 3.3622 | 3.3890 | 3.4440 | 3.4981 | 3.5510 | 3.6019 | 3.6571 | 3.7034 | |
7 | 3.2963 | 3.3281 | 3.3566 | 3.4123 | 3.4689 | 3.5296 | 3.5959 | 3.6924 | 3.7367 | |
丙二醇 | 8 | 4.0881 | 4.1096 | 4.1263 | 4.1532 | 4.1824 | 4.2107 | 4.2389 | 4.2694 | 4.2905 |
9 | 3.8612 | 3.8866 | 3.9052 | 3.9415 | 3.9748 | 4.0031 | 4.0319 | 4.0504 | 4.0556 | |
10 | 3.7629 | 3.7926 | 3.8116 | 3.8533 | 3.8924 | 3.9256 | 3.9573 | 3.9859 | 4.0098 | |
11 | 3.6879 | 3.7137 | 3.7333 | 3.7722 | 3.8087 | 3.8349 | 3.8720 | 3.8983 | 3.9158 | |
12 | 3.6837 | 3.7144 | 3.7430 | 3.7933 | 3.8433 | 3.8916 | 3.9402 | 3.9915 | 4.0364 | |
13 | 3.4050 | 3.4362 | 3.4664 | 3.5202 | 3.5753 | 3.6182 | 3.6683 | 3.7111 | 3.7468 | |
14 | 3.7051 | 3.7353 | 3.7648 | 3.8167 | 3.8697 | 3.9146 | 3.9607 | 4.0015 | 4.0322 |
编号 | 冰点/℃ | 浓度/% | 截距k1 | B1 | B2×105 | R2(COD) |
---|---|---|---|---|---|---|
1 | -15 | 28.7 | 3.6895 | 0.0047 | -1.4667 | 0.9994 |
2 | -20 | 34.5 | 3.5787 | 0.0041 | -0.3549 | 0.9990 |
3 | -25 | 39.5 | 3.3858 | 0.0063 | -1.7267 | 0.9989 |
4 | -30 | 44.5 | 3.4181 | 0.0057 | -1.8622 | 0.9997 |
5 | -35 | 47.6 | 3.3088 | 0.006 | -1.6388 | 0.9997 |
6 | -40 | 51.6 | 3.2131 | 0.006 | -0.6256 | 0.9998 |
7 | -45 | 54.7 | 3.2007 | 0.0046 | 1.6144 | 0.9971 |
Table 5 Polynomial fitting coefficient of specific heat capacity of glycol coolant with different volume fraction at different temperatures
编号 | 冰点/℃ | 浓度/% | 截距k1 | B1 | B2×105 | R2(COD) |
---|---|---|---|---|---|---|
1 | -15 | 28.7 | 3.6895 | 0.0047 | -1.4667 | 0.9994 |
2 | -20 | 34.5 | 3.5787 | 0.0041 | -0.3549 | 0.9990 |
3 | -25 | 39.5 | 3.3858 | 0.0063 | -1.7267 | 0.9989 |
4 | -30 | 44.5 | 3.4181 | 0.0057 | -1.8622 | 0.9997 |
5 | -35 | 47.6 | 3.3088 | 0.006 | -1.6388 | 0.9997 |
6 | -40 | 51.6 | 3.2131 | 0.006 | -0.6256 | 0.9998 |
7 | -45 | 54.7 | 3.2007 | 0.0046 | 1.6144 | 0.9971 |
温度/℃ | 截距k2 | C1 | C2×105 | R2(COD) |
---|---|---|---|---|
20 | 4.4172 | -0.025 | 8.2381 | 0.9641 |
25 | 4.433 | -0.0247 | 8.2647 | 0.9675 |
30 | 4.4485 | -0.0247 | 8.6145 | 0.968 |
40 | 4.4638 | -0.0241 | 9.0041 | 0.9702 |
50 | 4.4961 | -0.0244 | 10.216 | 0.9775 |
60 | 4.5748 | -0.0274 | 15.0637 | 0.9812 |
70 | 4.6659 | -0.0309 | 20.4279 | 0.9858 |
80 | 4.9004 | -0.0423 | 36.297 | 0.9717 |
90 | 4.9839 | -0.0461 | 41.8766 | 0.9638 |
Table 6 Polynomial fitting coefficient of specific heat capacity of glycol coolant with volume fraction at different temperatures
温度/℃ | 截距k2 | C1 | C2×105 | R2(COD) |
---|---|---|---|---|
20 | 4.4172 | -0.025 | 8.2381 | 0.9641 |
25 | 4.433 | -0.0247 | 8.2647 | 0.9675 |
30 | 4.4485 | -0.0247 | 8.6145 | 0.968 |
40 | 4.4638 | -0.0241 | 9.0041 | 0.9702 |
50 | 4.4961 | -0.0244 | 10.216 | 0.9775 |
60 | 4.5748 | -0.0274 | 15.0637 | 0.9812 |
70 | 4.6659 | -0.0309 | 20.4279 | 0.9858 |
80 | 4.9004 | -0.0423 | 36.297 | 0.9717 |
90 | 4.9839 | -0.0461 | 41.8766 | 0.9638 |
编号 | 冰点/℃ | 浓度/% | 截距k3 | A1 | A2×105 | R2(COD) |
---|---|---|---|---|---|---|
8 | -15 | 32.4 | 4.0247 | 0.0034 | -0.5237 | 0.999 |
9 | -20 | 37.5 | 3.7596 | 0.0056 | -2.536 | 0.9985 |
10 | -25 | 42.6 | 3.6638 | 0.0055 | -1.8009 | 0.9996 |
11 | -30 | 46.8 | 3.5942 | 0.0051 | -1.7006 | 0.9989 |
12 | -35 | 50.9 | 3.5765 | 0.0056 | -0.5733 | 0.9998 |
13 | -40 | 54 | 3.2769 | 0.0068 | -1.7371 | 0.9998 |
14 | -45 | 56 | 3.5763 | 0.0068 | -1.9351 | 0.9998 |
Table 7 Polynomial fitting coefficient of specific heat capacity of propylene glycol coolant with different volume fraction at different temperatures
编号 | 冰点/℃ | 浓度/% | 截距k3 | A1 | A2×105 | R2(COD) |
---|---|---|---|---|---|---|
8 | -15 | 32.4 | 4.0247 | 0.0034 | -0.5237 | 0.999 |
9 | -20 | 37.5 | 3.7596 | 0.0056 | -2.536 | 0.9985 |
10 | -25 | 42.6 | 3.6638 | 0.0055 | -1.8009 | 0.9996 |
11 | -30 | 46.8 | 3.5942 | 0.0051 | -1.7006 | 0.9989 |
12 | -35 | 50.9 | 3.5765 | 0.0056 | -0.5733 | 0.9998 |
13 | -40 | 54 | 3.2769 | 0.0068 | -1.7371 | 0.9998 |
14 | -45 | 56 | 3.5763 | 0.0068 | -1.9351 | 0.9998 |
温度/℃ | 截距k4 | D1 | D2×105 | R2(COD) |
---|---|---|---|---|
20 | 4.9219 | -0.0248 | -5.5789 | 0.9754 |
25 | 4.912 | -0.0234 | -6.6791 | 0.9763 |
30 | 4.9819 | -0.0263 | -2.6696 | 0.977 |
40 | 4.9847 | -0.0257 | -2.0956 | 0.9787 |
50 | 5.062 | -0.0287 | 2.5978 | 0.9795 |
60 | 5.1681 | -0.0328 | 8.0217 | 0.9807 |
70 | 5.2633 | -0.0367 | 13.7206 | 0.9793 |
80 | 5.448 | -0.0448 | 23.8572 | 0.9745 |
90 | 5.0694 | -0.0524 | 33.5938 | 0.9645 |
Table 8 Polynomial fitting coefficient of variation of specific heat capacity of propylene glycol coolant with volume fraction at different temperatures
温度/℃ | 截距k4 | D1 | D2×105 | R2(COD) |
---|---|---|---|---|
20 | 4.9219 | -0.0248 | -5.5789 | 0.9754 |
25 | 4.912 | -0.0234 | -6.6791 | 0.9763 |
30 | 4.9819 | -0.0263 | -2.6696 | 0.977 |
40 | 4.9847 | -0.0257 | -2.0956 | 0.9787 |
50 | 5.062 | -0.0287 | 2.5978 | 0.9795 |
60 | 5.1681 | -0.0328 | 8.0217 | 0.9807 |
70 | 5.2633 | -0.0367 | 13.7206 | 0.9793 |
80 | 5.448 | -0.0448 | 23.8572 | 0.9745 |
90 | 5.0694 | -0.0524 | 33.5938 | 0.9645 |
26 | Feng R Y, Mo B, Lin M L. Determination of specific heat capacity of liquid substances-DSC method[J]. Guangdong Chemical Industry, 1990, 17(1): 45-47. |
27 | 魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431. |
Wei X L, Xie P, Zhang X C, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431. | |
28 | 潘世伟, 方璞, 刘岩, 等. 调制DSC法测定聚烯烃树脂的比热[J]. 山东化工, 2019, 48(1): 87-90, 94. |
Pan S W, Fang P, Liu Y, et al. Specific heat of polyolefin resins measured with modulation DSC[J]. Shandong Chemical Industry, 2019, 48(1): 87-90, 94. | |
29 | 黄靖. 温度调制热分析技术对预吸热峰的研究[J]. 云南化工, 2020, 47(2): 19-24. |
Huang J. Study on shadow glass transition by temperature modulated differential scanning calorimetry[J]. Yunnan Chemical Technology, 2020, 47(2): 19-24. | |
30 | 彭胜, 王亚涛, 王志彦, 等. 差示扫描量热法测定戊二酸熔点及其比热容[J]. 分析仪器, 2023(2): 74-78. |
Peng S, Wang Y T, Wang Z Y, et al. Determination of melting point and specific heat capacity of glutaric acid by differential scanning calorimetry[J]. Analytical Instrumentation, 2023(2): 74-78. | |
31 | 徐丽, 浦群, 郑娜, 等. 调制DSC研究结晶性高聚物[J]. 实验技术与管理, 2018, 35(7): 70-74. |
Xu L, Pu Q, Zheng N, et al. Study of crystalline polymers by modulation DSC[J]. Experimental Technology and Management, 2018, 35(7): 70-74. | |
32 | American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook - Fundamentals (SI Edition)[M]. Atlanta, GA: ASHRAE, 2009. |
33 | 杨慧洁, 樊秀菊. 温度对冷却液产品理化性能的影响研究[J]. 石油商技, 2023, 41(5): 48-53. |
Yang H J, Fan X J. Study on the influence of temperature on the physical and chemical properties of coolant products[J]. Petroleum Products Application Research, 2023, 41(5): 48-53. | |
34 | 左寒阳. 3A21铝合金在乙二醇溶液中的腐蚀行为研究[D]. 成都: 四川轻化工大学, 2020. |
Zuo H Y. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol solution[D]. Chengdu: Sichuan University of Science & Engneering, 2020. | |
35 | 侯锦锋, 李杰, 蔡淑红. 二元醇型传热介质中添加剂技术的研究[J]. 太阳能, 2019(1): 67-70. |
Hou J F, Li J, Cai S H. Glycol type heat transfer medium additive technology[J]. Solar Energy, 2019(1): 67-70. | |
36 | 桑丽霞, 李锋. 碳酸盐复合蓄热材料的制备及热物性研究[J]. 化工学报, 2018, 69(S1): 129-135. |
Sang L X, Li F. Study on preparation and thermal properties of carbonates composite heat storage materials[J]. CIESC Journal, 2018, 69(S1): 129-135. | |
37 | 于强, 鹿院卫, 张晓盼, 等. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225. |
Yu Q, Lu Y W, Zhang X P, et al. Effect of nanoparticles on thermal properties of molten salt composite heat storage materials[J]. CIESC Journal, 2019, 70(S1): 217-225. | |
38 | 韩恒文. 发动机冷却液的最新研究进展[J]. 石油商技, 2010, 28(5): 14-19. |
Han H W. The latest research progress of engine coolant[J]. Petroleum Products Application Research, 2010, 28(5): 14-19. | |
39 | 任楠, 王涛, 吴玉庭, 等. 混合碳酸盐的DSC测量与比热容分析[J]. 化工学报, 2011, 62(S1): 197-202. |
Ren N, Wang T, Wu Y T, et al. DSC measurement and specific heat capacity analysis of mixed carbonate[J]. CIESC Journal, 2011, 62(S1): 197-202. | |
1 | 向红林, 杜巍. 冷却液物性参数对柴油机缸盖冷却性能的影响[J]. 车用发动机, 2024(1): 28-36. |
Xiang H L, Du W. Effect of coolant physical parameter on cooling performance of diesel engine cylinder head[J]. Vehicle Engine, 2024(1): 28-36. | |
2 | 刘显茜, 曹军磊, 李文辉, 等. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 14-19. |
Liu X X, Cao J L, Li W H, et al. Analysis of lithium-ion battery heat dissipation with coolant counter current in spider web channel cooling plate[J]. Materials Reports, 2024, 38(4): 14-19. | |
3 | 马秋鸣, 聂磊, 潘权稳, 等. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177. |
Ma Q M, Nie L, Pan Q W, et al. Heat transfer performance of battery cooler for electric vehicle[J]. CIESC Journal, 2021, 72(S1): 170-177. | |
4 | 冯能莲, 马瑞锦, 陈龙科, 等. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722. |
Feng N L, Ma R J, Chen L K, et al. Heat transfer characteristics of honeycomb liquid-cooled power battery module[J]. CIESC Journal, 2019, 70(5): 1713-1722. | |
5 | 王娟, 杨操, 史莹飞, 等. 一种乙二醇型低电导率冷却液的性能研究[J]. 石油商技, 2023, 41(5): 44-47. |
Wang J, Yang C, Shi Y F, et al. Study on the performance of an ethylene glycol type low conductivity coolant[J]. Petroleum Products Application Research, 2023, 41(5): 44-47. | |
6 | 罗逸, 辛莎, 何延. 新型纳米流体冷却液应用于风力发电机组冷却系统中的可行性分析[J]. 发电设备, 2023, 37(5): 293-297. |
Luo Y, Xin S, He Y. Feasibility analysis on application of new nanofluid coolant in wind turbine generator set cooling system[J]. Power Equipment, 2023, 37(5): 293-297. | |
7 | 杨长生, 马沛生, 夏淑倩. DSC法测定醋酸-水溶液的比热[J]. 高校化学工程学报, 2002, 16(5): 479-483. |
Yang C S, Ma P S, Xia S Q. The specific heats of aqueous mixtures of acetic acid with water measured with DSC[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(5): 479-483. | |
8 | 侯亚伟, 沙作良, 王彦飞. DSC法测定2,6-二叔丁基对甲酚-乙醇溶液的比热容[J]. 石油化工, 2012, 41(2): 215-218. |
Hou Y W, Sha Z L, Wang Y F. Determination of specific heat capacity of butylated hydroxytoluene-ethanol binary system by DSC method[J]. Petrochemical Technology, 2012, 41(2): 215-218. | |
9 | 杨长生, 马沛生, 夏淑倩. 差热分析法测定多元醇的比热[J]. 天津大学学报, 2003, 36(2): 192-196. |
Yang C S, Ma P S, Xia S Q. Heat capacity of glycol determined by differential scanning calorimeter[J]. Journal of Tianjin University, 2003, 36(2): 192-196. | |
10 | Hothar M, Wadsö L. Accurate heat capacity determination of solids and liquids using a heat conduction calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(5): 2179-2188. |
11 | Ma J, Habenschuss A, Wunderlich B. Modulated calorimetry of poly(1, 4-oxybenzoate), poly(2, 6-oxynaphthoate), and their copolymers[J]. Thermochimica Acta, 2008, 471(1/2): 90-96. |
12 | Buschow K H J, Cahn R W, Flemings M C, et al. Encyclopedia of materials: science and technology[J]. MRS Bulletin, 2004, 29(7): 512. |
13 | Wunderlich B, Boller A, Okazaki I, et al. Heat-capacity determination by temperature-modulated DSC and its separation from transition effects[J]. Thermochimica Acta, 1997, 304/305: 125-136. |
14 | Pyda M, Nowak-Pyda E, Wunderlich B. The heat capacity of polyethylene fibers measured by multi-frequency temperature-modulated calorimetry[J]. Thermochimica Acta, 2006, 442(1/2): 35-41. |
15 | Pyda M, Kwon Y K, Wunderlich B. Heat capacity measurement by sawtooth modulated standard heat-flux differential scanning calorimetry with sample temperature control[J]. Thermochimica Acta, 2001, 367/368: 217-227. |
16 | 金毅. 调制DSC技术在比热测试中的应用[J]. 炼油与化工, 2021, 32(3): 59-60. |
Jin Y. Application of modulated DSC technology in specific heat measurement[J]. Refining and Chemical Industry, 2021, 32(3): 59-60. | |
17 | 鄂红军, 朱和菊, 胡磊磊, 等. DSC法测定润滑油基础油比热容的研究[J]. 石油商技, 2015, 33(6): 80-83. |
E H J, Zhu H J, Hu L L, et al. Study on determination of specific heat capacity of lube base oil by DSC[J]. Petroleum Products Application Research, 2015, 33(6): 80-83. | |
18 | 胡玉华, 张秀娟, 王鹏, 等. DSC法测定润滑油产品比热容影响因素的研究[J]. 石油商技, 2013, 31(4): 72-75. |
Hu Y H, Zhang X J, Wang P, et al. Study on the factors affecting the determination of specific heat capacity of lubricating oil products by DSC[J]. Petroleum Products Application Research, 2013, 31(4): 72-75. | |
19 | 张静, 李峻峰, 何军, 等. DSC法测变压器油比热容的研究[J]. 变压器, 2012, 49(10): 48-50. |
Zhang J, Li J F, He J, et al. Research on specific heat capacity of transformer oil measured by DSC[J]. Transformer, 2012, 49(10): 48-50. | |
20 | 苑凯君, 韩晓强, 陈国锦, 等. DSC法测原油的比热容[J]. 油气储运, 2010, 29(11): 864-867, 799. |
Yuan K J, Han X Q, Chen G J, et al. Measurement of specific heat capacity of crude oil by differential scanning calorimetry[J]. Oil & Gas Storage and Transportation, 2010, 29(11): 864-867, 799. | |
21 | 陈坚, 杨永进, 周庆华. 调制DSC原理及其应用[J]. 实验室科学, 2011, 14(6): 97-99, 106. |
Chen J, Yang Y J, Zhou Q H. Principle and application of modulated differential scanning calorinetry[J]. Laboratory Science, 2011,14(6): 97-99, 106. | |
22 | 张玉梅, 王华平. MDSC的原理与应用[J]. 中国纺织大学学报, 2000, 26(3): 118-122. |
Zhang Y M, Wang H P. Principle and applications of MDSC[J]. Journal of Donghua University (Natural Science), 2000, 26(3):118-122. | |
23 | 马丽. 调制DSC技术中参数的优化方法[J]. 现代塑料加工应用, 2020, 32(4): 37-39. |
Ma L. Optimization method for parameters in modulated DSC technology[J]. Modern Plastics Processing and Applications, 2020, 32(4): 37-39. | |
24 | 马丽, 高宇新, 王文燕, 等. 调制DSC技术在聚烯烃初始结晶度测试中的应用[J]. 现代塑料加工应用, 2021, 33(4): 50-52. |
Ma L, Gao Y X, Wang W Y, et al. Application of modulated DSC technology in testing of the initial crystallinity of polyolefin[J]. Modern Plastics Processing and Applications, 2021, 33(4): 50-52. | |
25 | 国丽萍, 弋博, 陈锐, 等. 基于差示扫描量热法的含蜡原油析蜡特性测试[J]. 油气储运, 2023, 42(7): 799-807. |
Guo L P, Yi B, Chen R, et al. Experiment on wax precipitation property of waxy crude oil based on DSC[J]. Oil & Gas Storage and Transportation, 2023, 42(7): 799-807. | |
26 | 冯榕荫, 莫彬, 林木良. 液态物质比热容的测定: DSC法[J]. 广东化工, 1990, 17(1): 45-47. |
[1] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[2] | Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management [J]. CIESC Journal, 2024, 75(S1): 126-134. |
[3] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
[4] | Ji LI, Jianlin WANG, Rui HE, Xinjie ZHOU, Wen WANG, Liqiang ZHAO. DBSVDD-RVR based online soft sensing for quality variables in multimode batch processes [J]. CIESC Journal, 2024, 75(9): 3231-3241. |
[5] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[6] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[7] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[8] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[9] | Junyong HU, Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO. Experimental study on the performance of multi-stage reverse electrodialysis based on LiCl-NH4Cl aqueous solution [J]. CIESC Journal, 2024, 75(7): 2670-2679. |
[10] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
[11] | Hongtao LI, Zhenlei WANG, Xin WANG. Improved conditional Gaussian regression soft sensor based on just-in-time learning [J]. CIESC Journal, 2024, 75(6): 2299-2312. |
[12] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[13] | Bin SU, Haowei DONG, Zhenmin LUO, Jun DENG, Tao WANG, Fangming CHENG. Research progress on explosion dynamic characteristics and mechanism of hybrid mixtures [J]. CIESC Journal, 2024, 75(6): 2109-2122. |
[14] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
[15] | Yingtao WU, Lihan FEI, Xiangdong KONG, Zhi WANG, Chenglong TANG, Zuohua HUANG. Hypergolic ignition characteristics and propulsion performance of imidazolium dicyanamide ionic liquids blended with furfuryl alcohol [J]. CIESC Journal, 2024, 75(5): 2017-2025. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||