CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2813-2827.DOI: 10.11949/0438-1157.20241183
• Process system engineering • Previous Articles Next Articles
Mengxing YUAN(
), Lin SUN(
), Xionglin LUO
Received:2024-10-24
Revised:2024-11-26
Online:2025-07-09
Published:2025-06-25
Contact:
Lin SUN
通讯作者:
孙琳
作者简介:袁梦星(1999—),男,硕士研究生,yuan121617@163.com
基金资助:CLC Number:
Mengxing YUAN, Lin SUN, Xionglin LUO. Variable correlation analysis and full-cycle operation optimization of a multi-effect evaporative desalination system[J]. CIESC Journal, 2025, 76(6): 2813-2827.
袁梦星, 孙琳, 罗雄麟. 多效蒸发海水淡化系统变量相关性分析与全周期操作优化[J]. 化工学报, 2025, 76(6): 2813-2827.
Add to citation manager EndNote|Ris|BibTeX
| 固定条件 | 数值 | 设计参数 | 数值 | |
|---|---|---|---|---|
| 进料方式 | 平行-交叉 | 每效进料流量/(kg·s-1) | 31.59 | |
| 海水温度/℃ | 30 | 加热温差/℃ | 3 | |
| 海水含盐量/(g·kg-1) | 30 | TVC引射流量/(kg·s-1) | 4.43 | |
| 冷凝器出口温度/℃ | 35 | 外来驱动蒸汽流量/(kg·s-1) | 7.35 | |
| 驱动蒸汽压力Pmot/kPa | 500 | 淡水产量/(kg·s-1) | 75.81 | |
| 驱动蒸汽温度Tmot/℃ | 151.8 | 造水比GOR | 10.31 | |
| 运行周期/月 | 24 | 预热温升/℃ | 4 | |
| 换热管参数 | 长度/m | 6.000 | ||
| 外径/m | 0.024 | |||
| 厚度/m | 0.007 | |||
Table 1 Design and operation parameters of eight effect MED-TVC system
| 固定条件 | 数值 | 设计参数 | 数值 | |
|---|---|---|---|---|
| 进料方式 | 平行-交叉 | 每效进料流量/(kg·s-1) | 31.59 | |
| 海水温度/℃ | 30 | 加热温差/℃ | 3 | |
| 海水含盐量/(g·kg-1) | 30 | TVC引射流量/(kg·s-1) | 4.43 | |
| 冷凝器出口温度/℃ | 35 | 外来驱动蒸汽流量/(kg·s-1) | 7.35 | |
| 驱动蒸汽压力Pmot/kPa | 500 | 淡水产量/(kg·s-1) | 75.81 | |
| 驱动蒸汽温度Tmot/℃ | 151.8 | 造水比GOR | 10.31 | |
| 运行周期/月 | 24 | 预热温升/℃ | 4 | |
| 换热管参数 | 长度/m | 6.000 | ||
| 外径/m | 0.024 | |||
| 厚度/m | 0.007 | |||
| 效序数 | 换热面积设计值A(i)/m2 |
|---|---|
| 1 | 3763.76 |
| 2 | 3636.11 |
| 3 | 3478.54 |
| 4 | 3281.99 |
| 5 | 3047.60 |
| 6 | 2775.37 |
| 7 | 2465.31 |
| 8 | 2116.27 |
Table 2 Design value of heat exchange area for eight effect MED-TVC system
| 效序数 | 换热面积设计值A(i)/m2 |
|---|---|
| 1 | 3763.76 |
| 2 | 3636.11 |
| 3 | 3478.54 |
| 4 | 3281.99 |
| 5 | 3047.60 |
| 6 | 2775.37 |
| 7 | 2465.31 |
| 8 | 2116.27 |
| 影响因素 | 进料流量/ (kg·s-1) | 海水温度/℃ | 蒸汽流量/ (kg·s-1) | 蒸汽温度/℃ | 蒸发温度/℃ | 浓海水流量/ (kg·s-1) | 浓海水温度/℃ | 二次蒸汽/ (kg·s-1) |
|---|---|---|---|---|---|---|---|---|
| 进料流量 | 1.0000 | — | — | — | — | — | — | — |
| 海水温度 | 0.5849** | 1.0000 | — | — | — | — | — | — |
| 蒸汽流量 | 0.7027** | -0.5730** | 1.0000 | — | — | — | — | — |
| 蒸汽温度 | -0.4219** | 0.4041** | 0.4714** | 1.0000 | — | — | — | — |
| 蒸发温度 | -0.6065** | 0.6106** | 0.6152** | -0.2752 | 1.0000 | — | — | — |
| 浓海水流量 | 0.5407** | -0.4912** | -0.5581** | 0.3195** | 0.5042** | 1.000 | — | — |
| 浓海水温度 | 0.4636** | -0.4884** | -0.5045** | 0.3242** | 0.4341** | -0.4670** | 1.0000 | — |
| 二次蒸汽 | -0.6954** | 0.7431** | 0.7526** | -0.4714** | -0.4291** | 0.5702** | 0.5416** | 1.000 |
Table 3 Partial correlation analysis between secondary steam production and yield influencing factors
| 影响因素 | 进料流量/ (kg·s-1) | 海水温度/℃ | 蒸汽流量/ (kg·s-1) | 蒸汽温度/℃ | 蒸发温度/℃ | 浓海水流量/ (kg·s-1) | 浓海水温度/℃ | 二次蒸汽/ (kg·s-1) |
|---|---|---|---|---|---|---|---|---|
| 进料流量 | 1.0000 | — | — | — | — | — | — | — |
| 海水温度 | 0.5849** | 1.0000 | — | — | — | — | — | — |
| 蒸汽流量 | 0.7027** | -0.5730** | 1.0000 | — | — | — | — | — |
| 蒸汽温度 | -0.4219** | 0.4041** | 0.4714** | 1.0000 | — | — | — | — |
| 蒸发温度 | -0.6065** | 0.6106** | 0.6152** | -0.2752 | 1.0000 | — | — | — |
| 浓海水流量 | 0.5407** | -0.4912** | -0.5581** | 0.3195** | 0.5042** | 1.000 | — | — |
| 浓海水温度 | 0.4636** | -0.4884** | -0.5045** | 0.3242** | 0.4341** | -0.4670** | 1.0000 | — |
| 二次蒸汽 | -0.6954** | 0.7431** | 0.7526** | -0.4714** | -0.4291** | 0.5702** | 0.5416** | 1.000 |
| 模型 | R | 调整后R2 | 标准估算误差(SEE) |
|---|---|---|---|
| 1 | 0.513a | 0.263 | 0.41455 |
| 2 | 0.644b | 0.413 | 0.36982 |
| 3 | 0.756c | 0.570 | 0.31661 |
| 4 | 0.804d | 0.644 | 0.28793 |
| 5 | 0.956e | 0.914 | 0.14144 |
| 6 | 0.956f | 0.914 | 0.14155 |
| 7 | 0.960g | 0.922 | 0.13505 |
| 8 | 0.961h | 0.924 | 0.13320 |
| 9 | 0.962i | 0.925 | 0.13233 |
Table 4 Summary of regression model outputs
| 模型 | R | 调整后R2 | 标准估算误差(SEE) |
|---|---|---|---|
| 1 | 0.513a | 0.263 | 0.41455 |
| 2 | 0.644b | 0.413 | 0.36982 |
| 3 | 0.756c | 0.570 | 0.31661 |
| 4 | 0.804d | 0.644 | 0.28793 |
| 5 | 0.956e | 0.914 | 0.14144 |
| 6 | 0.956f | 0.914 | 0.14155 |
| 7 | 0.960g | 0.922 | 0.13505 |
| 8 | 0.961h | 0.924 | 0.13320 |
| 9 | 0.962i | 0.925 | 0.13233 |
| 变量 | 直接通径系数 | 间接通径系数 | 总间接效应 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Ff | Tf | Fh | Th | Ts | Fb | Tb | |||
| Ff | -0.051 | — | 0.0573 | 1.0098 | 0.4940 | 0.0261 | 0.2633 | 0.2272 | 2.0777 |
| Tf | 0.098 | -0.0298 | — | -0.8234 | -0.4732 | -0.0263 | -0.2392 | -0.2393 | -1.8312 |
| Fh | 1.437 | -0.0358 | -0.0562 | — | -0.5520 | -0.0265 | -0.2718 | -0.2472 | -1.1895 |
| Th | -1.171 | 0.0215 | 0.0396 | 0.6774 | — | 0.0110 | 0.1556 | 0.1589 | 1.0640 |
| Ts | -0.043 | 0.0309 | 0.0598 | 0.8840 | 0.3223 | — | 0.2456 | 0.2127 | 1.7553 |
| Fb | 0.487 | -0.0276 | -0.0481 | -0.8020 | -0.3741 | -0.0217 | — | -0.2288 | -1.5023 |
| Tb | 0.490 | -0.0236 | -0.0479 | -0.7250 | -0.3796 | -0.0187 | -0.2274 | — | -1.4222 |
Table 5 Pass analysis of secondary steam production in relation to production components
| 变量 | 直接通径系数 | 间接通径系数 | 总间接效应 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Ff | Tf | Fh | Th | Ts | Fb | Tb | |||
| Ff | -0.051 | — | 0.0573 | 1.0098 | 0.4940 | 0.0261 | 0.2633 | 0.2272 | 2.0777 |
| Tf | 0.098 | -0.0298 | — | -0.8234 | -0.4732 | -0.0263 | -0.2392 | -0.2393 | -1.8312 |
| Fh | 1.437 | -0.0358 | -0.0562 | — | -0.5520 | -0.0265 | -0.2718 | -0.2472 | -1.1895 |
| Th | -1.171 | 0.0215 | 0.0396 | 0.6774 | — | 0.0110 | 0.1556 | 0.1589 | 1.0640 |
| Ts | -0.043 | 0.0309 | 0.0598 | 0.8840 | 0.3223 | — | 0.2456 | 0.2127 | 1.7553 |
| Fb | 0.487 | -0.0276 | -0.0481 | -0.8020 | -0.3741 | -0.0217 | — | -0.2288 | -1.5023 |
| Tb | 0.490 | -0.0236 | -0.0479 | -0.7250 | -0.3796 | -0.0187 | -0.2274 | — | -1.4222 |
| 效数 | Fd(i)/(kg·s-1) | T(i)/℃ | ΔTp(i)/℃ | Fent/(kg·s-1) | ΔT(i)/℃ | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | |
| 1 | 31.59 | 19.22 | 28.78 | 67 | 66.00 | 66.00 | 4 | 2.50 | 2.94 | 4.43 | 4.18 | 4.07 | 3 | 2.50 | 2.94 |
| 2 | 31.59 | 16.03 | 23.77 | 64 | 63.50 | 63.06 | 4 | 2.52 | 2.93 | 3 | 2.52 | 2.93 | |||
| 3 | 31.59 | 16.19 | 24.47 | 61 | 60.98 | 60.13 | 4 | 2.58 | 2.96 | 3 | 2.58 | 2.96 | |||
| 4 | 31.59 | 16.31 | 25.35 | 58 | 58.40 | 57.17 | 4 | 2.67 | 3.02 | 3 | 2.66 | 3.02 | |||
| 5 | 31.59 | 16.61 | 26.52 | 55 | 55.74 | 54.15 | 4 | 4.74 | 3.15 | 3 | 2.85 | 3.14 | |||
| 6 | 31.59 | 15.88 | 27.80 | 52 | 52.89 | 51.01 | 4 | 7.00 | 7.00 | 3 | 2.93 | 3.01 | |||
| 7 | 31.59 | 16.34 | 29.04 | 49 | 49.96 | 48.00 | 4 | 7.00 | 7.00 | 3 | 2.96 | 2.79 | |||
| 8 | 31.59 | 17.98 | 28.59 | 46 | 47.00 | 45.21 | — | — | — | — | — | — | |||
Table 6 Comparison of operating conditions for three schemes
| 效数 | Fd(i)/(kg·s-1) | T(i)/℃ | ΔTp(i)/℃ | Fent/(kg·s-1) | ΔT(i)/℃ | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | 设计 | 稳态 | 全周期 | |
| 1 | 31.59 | 19.22 | 28.78 | 67 | 66.00 | 66.00 | 4 | 2.50 | 2.94 | 4.43 | 4.18 | 4.07 | 3 | 2.50 | 2.94 |
| 2 | 31.59 | 16.03 | 23.77 | 64 | 63.50 | 63.06 | 4 | 2.52 | 2.93 | 3 | 2.52 | 2.93 | |||
| 3 | 31.59 | 16.19 | 24.47 | 61 | 60.98 | 60.13 | 4 | 2.58 | 2.96 | 3 | 2.58 | 2.96 | |||
| 4 | 31.59 | 16.31 | 25.35 | 58 | 58.40 | 57.17 | 4 | 2.67 | 3.02 | 3 | 2.66 | 3.02 | |||
| 5 | 31.59 | 16.61 | 26.52 | 55 | 55.74 | 54.15 | 4 | 4.74 | 3.15 | 3 | 2.85 | 3.14 | |||
| 6 | 31.59 | 15.88 | 27.80 | 52 | 52.89 | 51.01 | 4 | 7.00 | 7.00 | 3 | 2.93 | 3.01 | |||
| 7 | 31.59 | 16.34 | 29.04 | 49 | 49.96 | 48.00 | 4 | 7.00 | 7.00 | 3 | 2.96 | 2.79 | |||
| 8 | 31.59 | 17.98 | 28.59 | 46 | 47.00 | 45.21 | — | — | — | — | — | — | |||
| 参数 | 初始设计 | 稳态优化 | 全周期优化 |
|---|---|---|---|
| 淡水产量/(kg·s-1) | 75.81 | 75.81~54.82 | 75.81 |
| 总淡水产量×109/(kg·s-1) | 4.78 | 3.91 | 4.78 |
| GOR | 10.31 | 12.19~8.81 | 11.59~11.32 |
| 累积造水比×108 | 6.50 | 6.29 | 7.29 |
| 蒸汽费用×107/CNY | 1.86 | 1.57 | 1.65 |
Table 7 Comparison of initial design, steady-state optimization and full-cycle optimization operation results
| 参数 | 初始设计 | 稳态优化 | 全周期优化 |
|---|---|---|---|
| 淡水产量/(kg·s-1) | 75.81 | 75.81~54.82 | 75.81 |
| 总淡水产量×109/(kg·s-1) | 4.78 | 3.91 | 4.78 |
| GOR | 10.31 | 12.19~8.81 | 11.59~11.32 |
| 累积造水比×108 | 6.50 | 6.29 | 7.29 |
| 蒸汽费用×107/CNY | 1.86 | 1.57 | 1.65 |
| [1] | Elfaqih A K, Elbaz A, Akash Y M. A review of solar photovoltaic-powered water desalination technologies[J]. Sustainable Water Resources Management, 2024, 10(3): 123. |
| [2] | Likhachev D S, Li F C. Large-scale water desalination methods: a review and new perspectives[J]. Desalination and Water Treatment, 2013, 51(13/14/15): 2836-2849. |
| [3] | 闫玉莲, 吴云奇, 吴水波, 等. 海水淡化在供水行业成本优势潜力分析[J]. 盐科学与化工, 2018, 47(9): 16-20. |
| Yan Y L, Wu Y Q, Wu S B, et al. Analysis of cost potential of seawater desalination in water supply industry[J]. Journal of Salt Science and Chemical Industry, 2018, 47(9): 16-20. | |
| [4] | 张建丽. 对低温多效海水淡化国产化工作技术难点的分析及建议[C]//2009中国电力脱盐技术(西湖)论坛暨首届全国电站化学专业技术研讨会论文集. 2009: 93-99. |
| Zhang J L. Analysis and suggestions on technical difficulties in the localization of low-temperature multi-effect seawater desalination[C]//Proceedings of the 2009 China Electric Power Desalination Technology (West Lake) Forum and the First National Conference on Chemical Professional Techniques for Power Stations. 2009: 93-99. | |
| [5] | 刘聪. 多效蒸发系统的热力特性分析与优化研究[D]. 大连: 大连理工大学, 2022. |
| Liu C. Thermal performance analysis and optimization of the multi-effect evaporation desalination system[D]. Dalian: Dalian University of Technology, 2022. | |
| [6] | 肖轶文. 多效蒸发系统热力性能分析与优化研究[D]. 湘潭: 湘潭大学, 2021. |
| Xiao Y W. Thermal performance analysis and optimization of multiple effect evaporation system[D]. Xiangtan: Xiangtan University, 2021. | |
| [7] | Alrbai M, Al-Dahidi S, Alahmer H, et al. Utilizing waste heat in wastewater treatment plants for water desalination: modeling and multi-objective optimization of a multi-effect desalination system using decision tree regression and pelican optimization algorithm[J]. Thermal Science and Engineering Progress, 2024, 54: 102784. |
| [8] | 黄越辉, 张鹏, 李驰, 等. 基于波动划分及时移技术的多风电场出力相关性研究[J]. 电力自动化设备, 2018, 38(4): 162-168. |
| Huang Y H, Zhang P, Li C, et al. Research on correlation of multiple wind farms power based on fluctuation classification and time shifting[J]. Electric Power Automation Equipment, 2018, 38(4): 162-168. | |
| [9] | Rahim M A. Detection and elimination of insignificant interacting subsystems in MIMO closed-loop systems using the least mean square-based partial correlation algorithm[J]. Journal of Engineering and Applied Science, 2023, 70(1): 116. |
| [10] | 张晓艳, 王晓楠, 曹焜, 等. 5个工业大麻品种(系)纤维产量及产量构成因素的相关性分析[J]. 作物杂志, 2020(4): 121-126. |
| Zhang X Y, Wang X N, Cao K, et al. Correlation analysis of fiber yield and yield components in five industrial hemp varieties (lines)[J]. Crops, 2020(4): 121-126. | |
| [11] | Carballo J A, Bonilla J, Roca L, et al. Optimal operating conditions analysis for a multi-effect distillation plant according to energetic and exergetic criteria[J]. Desalination, 2018, 435: 70-76. |
| [12] | 周士鹤. 低温多效蒸发海水淡化系统热力性能分析与优化研究[D]. 大连: 大连理工大学, 2016. |
| Zhou S H. Thermal performance analysis and optimization of low temperature multi-effect evaporation desalination system[D]. Dalian: Dalian University of Technology, 2016. | |
| [13] | Shakib S E, Amidpour M, Aghanajafi C. Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration[J]. Desalination, 2012, 285: 366-376. |
| [14] | 邓润亚. 海水淡化系统能量综合利用与经济性研究[D]. 北京: 中国科学院工程热物理研究所, 2009. |
| Deng R Y. Energy comprehensive utilizatuion and economy study on seawater desalination system[D]. Beijing: The Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2009. | |
| [15] | 赵洁莲, 韩延民. 低温多效海水淡化造水比影响因素研究[J]. 上海节能, 2019(8): 685-691. |
| Zhao J L, Han Y M. Study on key influencing factors of the gained output ratio of LT-MED[J]. Shanghai Energy Conservation, 2019(8): 685-691. | |
| [16] | Binazadeh T, Shafiei M H. Robust stabilization of uncertain nonlinear slowly-varying systems: application in a time-varying inertia pendulum[J]. ISA Transactions, 2014, 53(2): 373-379. |
| [17] | 徐升, 唐智新, 孙雪, 等. 低温多效海水淡化运行出现的问题及应对措施[J]. 冶金动力, 2018, 37(8): 64-68. |
| Xu S, Tang Z X, Sun X, et al. Problems in low-temperature multi-effect seawater desalination operation and countermeasures[J]. Metallurgical Power, 2018, 37(8): 64-68. | |
| [18] | 谢冬雷, 刘晓华, 魏巍, 等. 海水淡化系统水平管降膜蒸发器传热系数研究[J]. 节能, 2008, 27(10): 17-21, 2. |
| Xie D L, Liu X H, Wei W, et al. Study on heat transfer coefficients of falling film evaporator with horizontal tube[J]. Energy Conservation, 2008, 27(10): 17-21, 2. | |
| [19] | 王天媛, 陈春波, 孙琳, 等. 基于全周期缓慢结垢的多效蒸发海水淡化慢时变系统优化设计[J]. 化工学报, 2022, 73(2): 759-769. |
| Wang T Y, Chen C B, Sun L, et al. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling[J]. CIESC Journal, 2022, 73(2): 759-769. | |
| [20] | 王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482. |
| Wang D H, Sun L, Luo X L. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system[J]. CIESC Journal, 2022, 73(12): 5469-5482. | |
| [21] | Rahimi B, Marvi Z, Alamolhoda A A, et al. An industrial application of low-grade sensible waste heat driven seawater desalination: a case study[J]. Desalination, 2019, 470: 114055. |
| [22] | Chen Q, Burhan M, Shahzad M W, et al. A zero liquid discharge system integrating multi-effect distillation and evaporative crystallization for desalination brine treatment[J]. Desalination, 2021, 502: 114928. |
| [23] | Wu S R. Analysis of water production costs of a nuclear desalination plant with a nuclear heating reactor coupled with MED processes[J]. Desalination, 2006, 190(1/2/3): 287-294. |
| [24] | Liu J P, Wang L, Jia L, et al. The influence of the area ratio on ejector efficiencies in the MED-TVC desalination system[J]. Desalination, 2017, 413: 168-175. |
| [25] | 郭翠, 宋玉亮. 低温多效海水淡化蒸发器变工况参数的研究[J]. 冶金动力, 2022, 41(6): 67-70. |
| Guo C, Song Y L. Study on variable working parameters of low-temperature multi-effect desalination evaporator[J]. Metallurgical Power, 2022, 41(6): 67-70. | |
| [26] | 隆媛媛. 多变量耦合系统的解耦控制设计和仿真[D]. 桂林: 广西师范大学, 2010. |
| Long Y Y. Design and simulation of decoupling control on multivariable coupling system[D]. Guilin: Guangxi Normal University, 2010. | |
| [27] | 王天媛. 基于全周期裕量缓释的多效蒸发海水淡化慢时变系统优化设计[D]. 北京: 中国石油大学(北京), 2022. |
| Wang T Y. Optimal design of slow time-varying system for multi-effect desalination based on full cycle sustained release of margin[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| [28] | Kumar R, Umanand L. Dynamic pressure modulation for solar desalination system[J]. Desalination, 2009, 249(1): 90-98. |
| [29] | 林作楫. 相关系数的计算与应用(上)[J]. 河南农林科技, 1980, 9(11): 8-10. |
| Lin Z J. Calculation and application of correlation coefficient (part 1)[J]. Journal of Henan Agricultural Sciences, 1980, 9(11): 8-10. | |
| [30] | Ashok Kumar J, Abirami S. Aspect-based opinion ranking framework for product reviews using a Spearman's rank correlation coefficient method[J]. Information Sciences, 2018, 460: 23-41. |
| [31] | Ahalawat S, Singh S K, Gangwar L K, et al. Estimation of genetic variability, correlation and path analysis for quality and agronomic traits in in forage sorghum[J]. Journal of Advances in Biology & Biotechnology, 2024, 27(10): 1-9. |
| [32] | Hassan A S, Ali Darwish M. Performance of thermal vapor compression[J]. Desalination, 2014, 335(1): 41-46. |
| [33] | 帅露. 多效蒸发油田污水处理系统热力学分析与实验研究[D]. 大连: 大连理工大学, 2015. |
| Shuai L. Thermodynamic analysis of multi-effect evaporation system and experimental study for the purification treatment of the oilfield wastewater[D]. Dalian: Dalian University of Technology, 2015. | |
| [34] | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
| [35] | 徐志明, 张仲彬, 郭闻州, 等. 微粒和析晶混合污垢模型[J]. 工程热物理学报, 2006, 27(S2): 81-84. |
| Xu Z M, Zhang Z B, Guo W Z, et al. A theoretical model of composite fouling of particulate and crystallization[J]. Journal of Engineering Thermophysics, 2006, 27(S2): 81-84. | |
| [36] | Bin Amer A O. Development and optimization of ME-TVC desalination system[J]. Desalination, 2009, 249(3): 1315-1331. |
| [37] | Druetta P, Aguirre P, Mussati S. Optimization of multi-effect evaporation desalination plants[J]. Desalination, 2013, 311: 1-15. |
| [38] | 张海春, 王海增, 阮国岭. 热法海水淡化阻垢及清洗技术研究现状[J]. 中国给水排水, 2008, 24(16): 12-16. |
| Zhang H C, Wang H Z, Ruan G L. Research status of scale prevention and cleaning techniques in thermal seawater desalination[J]. China Water & Wastewater, 2008, 24(16): 12-16. | |
| [39] | Shahzad M W, Burhan M, Ang L, et al. Energy-water-environment nexus underpinning future desalination sustainability[J]. Desalination, 2017, 413: 52-64. |
| [40] | 卢晓宁, 刘红卫, 杨善学, 等. 带一般约束无导数优化问题的改进信赖域算法[J]. 吉林大学学报(理学版), 2018, 56(2): 273-280. |
| Lu X N, Liu H W, Yang S X, et al. Improved trust-region derivative-free algorithm for general constrained optimization problems[J]. Journal of Jilin University (Science Edition), 2018, 56(2): 273-280. | |
| [41] | 于天齐. 车速预测和基于MPC的混合动力汽车能量管理策略研究[D]. 重庆: 重庆理工大学, 2022. |
| Yu T Q. Research on speed prediction and energy management strategy of hybrid electric vehicle based on MPC[D]. Chongqing: Chongqing University of Technology, 2022. | |
| [42] | 侯进. 基于滚动优化的全向轮式移动操作机器人协调运动规划研究[D]. 武汉: 华中科技大学, 2020. |
| Hou J. Study on coordinated motion planning of an omni-directional wheeled mobile manipulator based on receding horizon optimization[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| [43] | 任超, 王凯, 韩洁, 等. 事件-时间触发的慢时变工业过程动态调度方法[J]. 化工学报, 2024, 76(1): 256-265. |
| Ren C, Wang K, Han J, et al. Event-time triggered slow time-varying industrial process dynamic scheduling method[J]. CIESC Journal, 2024, 76(1): 256-265. | |
| [44] | 王勇. 复杂多效蒸发过程模拟与操作优化研究[D]. 福州: 福州大学, 2006. |
| Wang Y. Process simulation and operation optimization of complex multi-effect evaporation[D]. Fuzhou: Fuzhou University, 2006. |
| [1] | Junyao QIAN, Chengze WANG, Jinhua ZHANG, Hua LIU, Zhaorui LIU, Jinxiang LI. Reaction mechanism for the enhanced removal of selenite in water by ball-milling of zero-valent iron with Fe3O4 [J]. CIESC Journal, 2025, 76(1): 385-393. |
| [2] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
| [3] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
| [4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
| [5] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
| [6] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
| [7] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
| [8] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
| [9] | Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling [J]. CIESC Journal, 2022, 73(2): 759-769. |
| [10] | XIE Fuming, XU Feng, LUO Xionglin. Influence analysis of process scheduling on optimized operation strategy of acetylene hydrogenation reactor [J]. CIESC Journal, 2021, 72(5): 2718-2726. |
| [11] | Chao REN,Lin SUN,Xionglin LUO. Analysis on the reconfiguration of the control system of the heat exchanger in response to the slow and time-varying fouling [J]. CIESC Journal, 2021, 72(10): 5273-5283. |
| [12] | Yuexi WU, Wei ZENG, Hong LIU, Jianmin LI, Yongzhen PENG. Exploration of nitrogen transformation pathway in Feammox [J]. CIESC Journal, 2020, 71(5): 2265-2272. |
| [13] | WANG Feng, WANG Xiaoli, XIE Yongfang, XIE Sen, YANG Chunhua. Multi-delays identification for alumina evaporation process based on time-correlation analysis [J]. CIESC Journal, 2017, 68(3): 992-997. |
| [14] | LI Qiumei, TIAN Xuemin, SHANG Linyuan. Detection of model-plant mismatch based on partial correlation analysis of MPC controllers [J]. CIESC Journal, 2016, 67(3): 852-857. |
| [15] | LI Yuan, ZHANG Zhanpeng, XU Mingyuan, CHEN Bingzhen, ZHAO Jinsong. Non-regular alarm correlation analysis [J]. CIESC Journal, 2015, 66(8): 3153-3160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||