CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 385-393.DOI: 10.11949/0438-1157.20240812
• Energy and environmental engineering • Previous Articles Next Articles
Junyao QIAN(), Chengze WANG, Jinhua ZHANG, Hua LIU, Zhaorui LIU, Jinxiang LI(
)
Received:
2024-07-17
Revised:
2024-09-11
Online:
2025-02-08
Published:
2025-01-25
Contact:
Jinxiang LI
钱珺瑶(), 王承泽, 张晋华, 刘华, 刘昭睿, 李锦祥(
)
通讯作者:
李锦祥
作者简介:
钱珺瑶(2001—),女,硕士研究生,965765935@qq.com
基金资助:
CLC Number:
Junyao QIAN, Chengze WANG, Jinhua ZHANG, Hua LIU, Zhaorui LIU, Jinxiang LI. Reaction mechanism for the enhanced removal of selenite in water by ball-milling of zero-valent iron with Fe3O4[J]. CIESC Journal, 2025, 76(1): 385-393.
钱珺瑶, 王承泽, 张晋华, 刘华, 刘昭睿, 李锦祥. 磁铁矿球磨零价铁增效去除水中亚硒酸盐的反应机制[J]. 化工学报, 2025, 76(1): 385-393.
Fig.5 Polarization impedance spectrums (a) of ZVI-based materials and their Se XPS after reaction with Se(Ⅳ) (b); Schematic diagram for the enhanced removal of Se(Ⅳ) by BF-ZVI (c)
Fig.6 Influences of different factors on kinetics of Se(Ⅳ) removal by BF-ZVI: (a) dosages of BF-ZVI; (b) concentrations of Se(Ⅳ); (c) ball-milling time of BF-ZVI; (d) percentage of Fe3O4; (e) dissolved oxygen; (f) consecutive running of BF-ZVI
1 | Köhrle J. Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism[J]. International Journal of Molecular Sciences, 2023, 24(4): 3393. |
2 | Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review[J]. Science of the Total Environment, 2020, 698: 134339. |
3 | El-Ramady H, Abdalla N, Alshaal T, et al. Selenium in soils under climate change, implication for human health[J]. Environmental Chemistry Letters, 2015, 13(1): 1-19. |
4 | Ullah H, Liu G J, Yousaf B, et al. Developmental selenium exposure and health risk in daily foodstuffs: a systematic review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2018, 149: 291-306. |
5 | Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907. |
6 | Banerjee M, Kalwani P, Chakravarty D, et al. Modulation of oxidative stress machinery determines the contrasting ability of cyanobacteria to adapt to Se(Ⅵ) or Se(Ⅳ)[J]. Plant Physiology and Biochemistry, 2024, 211: 108673. |
7 | 鲍淳煜, 罗伟锋, 寿建昕, 等. 零价铁去除水中硒的研究进展[J]. 环境化学, 2022, 41(2): 719-728. |
Bao C Y, Luo W F, Shou J X, et al. Research progress of removal selenium from aqueous solution by zero-valent iron[J]. Environmental Chemistry, 2022, 41(2): 719-728. | |
8 | Lenz M, Lens P N L. The essential toxin: the changing perception of selenium in environmental sciences[J]. Science of the Total Environment, 2009, 407(12): 3620-3633. |
9 | Ponton D E, Graves S D, Fortin C, et al. Selenium interactions with algae: chemical processes at biological uptake sites, bioaccumulation, and intracellular metabolism[J]. Plants, 2020, 9(4): 528. |
10 | 刘轩, 苏银皎, 滕阳, 等. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932. |
Liu X, Su Y J, Teng Y, et al. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash[J]. CIESC Journal, 2022, 73(2): 923-932. | |
11 | 王雨红, 吕艳, 农敬义, 等. 铁粉还原脱除电解锰阳极液中的硒[J]. 化工学报, 2015, 66(9): 3698-3704. |
Wang Y H, Lyu Y, Nong J Y, et al. Reductive removing selenium from electrolytic manganese anolyte with iron powder[J]. CIESC Journal, 2015, 66(9): 3698-3704. | |
12 | Ali I, Shrivastava V. Recent advances in technologies for removal and recovery of selenium from (waste) water: a systematic review[J]. Journal of Environmental Management, 2021, 294: 112926. |
13 | Winkel L H E, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding[J]. Environmental Science & Technology, 2012, 46(2): 571-579. |
14 | Wang Z L, Wang Y M, Gomes R L, et al. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms[J]. Journal of Hazardous Materials, 2022, 427: 128122. |
15 | López de Arroyabe Loyo R, Nikitenko S I, Scheinost A C, et al. Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles[J]. Environmental Science & Technology, 2008, 42(7): 2451-2456. |
16 | 曹贝, 李锦祥, 关小红. 弱磁场强化零价铁对水中U(Ⅵ)去除效能[J]. 化工学报, 2017, 68(8): 3282-3290. |
Cao B, Li J X, Guan X H. Enhancing reactivity of zerovalent iron toward U(Ⅵ) by weak magnetic field[J]. CIESC Journal, 2017, 68(8): 3282-3290. | |
17 | Obiri-Nyarko F, Grajales-Mesa S J, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111: 243-259. |
18 | 王承泽, 顾凯丽, 张晋华, 等. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
Wang C Z, Gu K L, Zhang J H, et al. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water[J]. CIESC Journal, 2023, 74(5): 2197-2206. | |
19 | Yoon I H, Kim K W, Bang S, et al. Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 185-192. |
20 | 赵雅光, 万俊锋, 王杰, 等. 零价铁(ZVI)去除水中的As(Ⅲ)[J]. 化工学报, 2015, 66(2): 730-737. |
Zhao Y G, Wan J F, Wang J, et al. Removal of arsenite from aqueous environment by zero-valent iron (ZVI)[J]. CIESC Journal, 2015, 66(2): 730-737. | |
21 | Wang Z L, Lv C W, Wang Y M, et al. Zero-valent iron (ZVI) facilitated in situ selenium (Se) immobilization and its recovery by magnetic separation: mechanisms and implications for microbial ecology[J]. Journal of Hazardous Materials, 2024, 473: 134591. |
22 | Fan P, Li L N, Sun Y K, et al. Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study[J]. Water Research, 2019, 159: 375-384. |
23 | He X Y, Min X B, Peng T Y, et al. Mechanochemically activated microsized zero-valent iron/pyrite composite for effective hexavalent chromium sequestration in aqueous solution[J]. Journal of Chemical & Engineering Data, 2020, 65(4): 1936-1945. |
24 | Xu J, Tang J, Baig S A, et al. Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe-Fe3O4 nanocomposites[J]. Journal of Hazardous Materials, 2013, 244/245: 628-636. |
25 | Tang C L, Huang Y H, Zeng H, et al. Reductive removal of selenate by zero-valent iron: the roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms[J]. Water Research, 2014, 67: 166-174. |
26 | Sun Y K, Li J X, Huang T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review[J]. Water Research, 2016, 100: 277-295. |
27 | Liang L P, Yang W J, Guan X H, et al. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron[J]. Water Research, 2013, 47(15): 5846-5855. |
28 | Tang C L, Huang Y P, Zhang Z Q, et al. Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+ synergetic system[J]. Applied Catalysis B: Environmental, 2016, 184: 320-327. |
29 | Klausen J, Troeber S P, Haderlein S B, et al. Reduction of substituted nitrobenzenes by Fe(Ⅱ) in aqueous mineral suspensions[J]. Environmental Science & Technology, 1995, 29(9): 2396-2404. |
30 | Bae S, Hanna K. Reactivity of nanoscale zero-valent iron in unbuffered systems: effect of pH and Fe(Ⅱ) dissolution[J]. Environmental Science & Technology, 2015, 49(17): 10536-10543. |
[1] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[2] | Bin LAN, Shuai LU, Ji XU, Ming ZHAI, Junwu WANG. CFD-DEM-IBM simulation of fluidized bed direct reduction of magnetite [J]. CIESC Journal, 2024, 75(12): 4477-4489. |
[3] | Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate [J]. CIESC Journal, 2023, 74(9): 3946-3955. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[6] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[7] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[8] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[9] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
[10] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
[11] | LIU Shurui, WU Xue'e, WANG Yuanpeng. Progress in nanomaterials mediated microbial extracellular electron transfer [J]. CIESC Journal, 2021, 72(7): 3576-3589. |
[12] | WANG Yutong, PAN Lun, ZHANG Xiangwen, ZOU Jijun. Research progress of ammonia borane hydrolytic hydrogen production [J]. CIESC Journal, 2021, 72(1): 180-191. |
[13] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
[14] | Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962. |
[15] | Wenhui ZHU, Xiahui WANG, Xintong YANG, Xingrun WANG, Jun HE, Guoxin HUANG, Guohua JI. Mechanisms of anti-agglomeration and anti-clogging by using zero-valent iron entrapmented in calcium alginate beads [J]. CIESC Journal, 2020, 71(5): 2344-2351. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||