CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3775-3782.DOI: 10.11949/0438-1157.20240557
• Energy and environmental engineering • Previous Articles Next Articles
Jiawen LIU(), Wencheng XIA(
), Feng WU, Yaoli PENG, Guangyuan XIE
Received:
2024-05-26
Revised:
2024-06-10
Online:
2024-11-04
Published:
2024-10-25
Contact:
Wencheng XIA
通讯作者:
夏文成
作者简介:
刘家稳(1999—),男,硕士研究生,1770028156@qq.com
基金资助:
CLC Number:
Jiawen LIU, Wencheng XIA, Feng WU, Yaoli PENG, Guangyuan XIE. Mechanism study on mechanochemical solid-phase oxidation recovery of spent LiFePO4 batteries[J]. CIESC Journal, 2024, 75(10): 3775-3782.
刘家稳, 夏文成, 武锋, 彭耀丽, 谢广元. 废旧磷酸铁锂电池机械化学固相氧化回收锂机理[J]. 化工学报, 2024, 75(10): 3775-3782.
1 | Xu Z R, Gao L B, Liu Y J, et al. Review—recent developments in the doped LiFePO4 cathode materials for power lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(13): A2600-A2610. |
2 | Wei G L, Liu Y X, Jiao B L, et al. Direct recycling of spent Li-ion batteries: challenges and opportunities toward practical applications[J]. iScience, 2023, 26(9): 107676. |
3 | Lebedeva N P, Boon-Brett L. Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components[J]. Journal of the Electrochemical Society, 2016, 163(6): A821-A830. |
4 | Ruan J Q, Tong Y C, Ran J Y, et al. Simplifying and optimizing Li4SiO4 preparation from spent LiFePO4 batteries with enhanced CO2 adsorption[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(38): 14158-14166. |
5 | Saju D, Ebenezer J, Chandran N, et al. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review[J]. Industrial & Engineering Chemistry Research, 2023, 62(30): 11768-11783. |
6 | Shangguan E B, Fu S Q, Wu S Q, et al. Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: a facile and smart approach to make sustainable anodes for alkaline Ni-Fe secondary batteries[J]. Journal of Power Sources, 2018, 403: 38-48. |
7 | Wu J, MacKenzie A, Sharma N. Recycling lithium-ion batteries: adding value with multiple lives[J]. Green Chemistry, 2020, 22(7): 2244-2254. |
8 | Lin J, Li L, Fan E S, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489. |
9 | Hu G R, Gong Y F, Peng Z D, et al. Direct recycling strategy for spent lithium iron phosphate powder: an efficient and wastewater-free process[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11606-11616. |
10 | Chen J P, Li Q W, Song J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
11 | Song X, Hu T, Liang C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
12 | Li X L, Zhang J, Song D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
13 | Zhang X X, Xue Q, Li L, et al. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7041-7049. |
14 | Liu Y, Lv W G, Zheng X H, et al. Near-to-stoichiometric acidic recovery of spent lithium-ion batteries through induced crystallization[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3183-3194. |
15 | Meshram P, Mishra A, Abhilash, et al. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review[J]. Chemosphere, 2020, 242: 125291. |
16 | Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
17 | Chagnes A, Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1191-1199. |
18 | Li H, Xing S Z, Liu Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
19 | Shangguan E B, Wang Q, Wu C K, et al. Novel application of repaired LiFePO4 as a candidate anode material for advanced alkaline rechargeable batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13312-13323. |
20 | Xiao J F, Li J, Xu Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25. |
21 | Dai Y, Xu Z D, Hua D, et al. Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process[J]. Journal of Hazardous Materials, 2020, 396: 122707. |
22 | Zheng R J, Zhao L, Wang W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
23 | Zhang J L, Hu J T, Liu Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
24 | Shiga T, Kondo H, Kato Y, et al. Mediator catalyst for lithium fluoride decomposition for lithium recovery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2260-2266. |
25 | 马伊, 曹世伟, 王家骏, 等. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
Ma Y, Cao S W, Wang J J, et al. Research progress of recycling cathode materials for waste lithium ion batteries in deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. | |
26 | Howard J L, Cao Q, Browne D L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?[J]. Chemical Science, 2018, 9(12): 3080-3094. |
27 | Wang M M, Tan Q Y, Huang Q F, et al. Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route[J]. Journal of Hazardous Materials, 2021, 413: 125222. |
28 | Liu K, Yang J K, Hou H J, et al. Facile and cost-effective approach for copper recovery from waste printed circuit boards via a sequential mechanochemical/leaching/recrystallization process[J]. Environmental Science & Technology, 2019, 53(5): 2748-2757. |
29 | Yin X F, Wu Y F, Tian X M, et al. Green recovery of rare earths from waste cathode ray tube phosphors: oxidative leaching and kinetic aspects[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7080-7089. |
30 | Wang M M, Tan Q Y, Li J H. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries[J]. Environmental Science & Technology, 2018, 52(22): 13136-13143. |
31 | Shentu H J, Xiang B, Cheng Y J, et al. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery[J]. Environmental Technology & Innovation, 2021, 23: 101569. |
32 | Dedryvère R, Maccario M, Croguennec L, et al. X-ray photoelectron spectroscopy investigations of carbon-coated Li x FePO4 materials[J]. Chemistry of Materials, 2008, 20(22): 7164-7170. |
33 | Castro L, Dedryvère R, El Khalifi M, et al. The spin-polarized electronic structure of LiFePO4 and FePO4 evidenced by in-lab XPS[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17995-18000. |
34 | Zhou F, Kang K, Maxisch T, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4 [J]. Solid State Communications, 2004, 132(3/4): 181-186. |
35 | Mahmud S, Rahman M, Kamruzzaman M, et al. Recent advances in lithium-ion battery materials for improved electrochemical performance: a review[J]. Results in Engineering, 2022, 15: 100472. |
[1] | Yuhao TANG, Yingying ZHANG, Zhiwei ZHAO, Mengyue LU, Feifei ZHANG, Xiaoqing WANG, Jiangfeng YANG. Ultra-microporous Sc/In-CPM-66A with low-polar pore surfaces for efficient separation of CH4/N2 [J]. CIESC Journal, 2024, 75(9): 3210-3220. |
[2] | Xiaoyuan ZHENG, Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU. Phosphorus transformation during subcritical hydrothermal conversion of sewage sludge [J]. CIESC Journal, 2024, 75(8): 2970-2982. |
[3] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[4] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[5] | Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene [J]. CIESC Journal, 2024, 75(7): 2565-2573. |
[6] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[7] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[8] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[9] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[10] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[11] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[14] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||