CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 53-70.DOI: 10.11949/0438-1157.20240701
• Reviews and monographs • Previous Articles Next Articles
Chen YANG1,2(), Wei MAO1(
), Xingzong DONG1, Song TIAN1, Fengwei ZHAO1, Jian LYU1(
)
Received:
2024-06-23
Revised:
2024-09-06
Online:
2025-02-08
Published:
2025-01-25
Contact:
Wei MAO, Jian LYU
杨晨1,2(), 毛伟1(
), 董兴宗1, 田松1, 赵锋伟1, 吕剑1(
)
通讯作者:
毛伟,吕剑
作者简介:
杨晨(1992—),男,博士研究生,cyang419@163.com
基金资助:
CLC Number:
Chen YANG, Wei MAO, Xingzong DONG, Song TIAN, Fengwei ZHAO, Jian LYU. Research progress in the synthesis of olefins by selective hydrodechlorination[J]. CIESC Journal, 2025, 76(1): 53-70.
杨晨, 毛伟, 董兴宗, 田松, 赵锋伟, 吕剑. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70.
活性组分 | 反应温度/℃ | 载体 | 反应时间/h | 转化率/% | 乙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pd | 250 | γ-Al2O3 | 1 | 75 | <5 | [ |
250 | γ-Al2O3 | — | 12.8 | 0.1 | [ | |
170 | TiO2 | 4 | 0.09 | 2.47 | [ | |
170 | SiO2 | 4 | 0.08 | 0.7 | [ | |
170 | C | 4 | 0.12 | 3.81 | [ | |
270 | ZrO2 | 1 | 4.5 | 5.8 | [ | |
Pt | 250 | TiO2 | 21 | <2 | 3.6 | [ |
275 | C | 14 | 4.0 | 6.0 | [ | |
Ru | 250 | SiO2 | — | — | 53.5 | [ |
Rh | 200 | SiO2 | 3.3 | 4.0 | 0 | [ |
300 | γ-Al2O3 | 10 | — | 4.4 | [ | |
Ag | 270 | ZrO2 | 1 | 0.7 | 29.3 | [ |
250 | γ-Al2O3 | — | 1.8 | 46.8 | [ | |
Ni | 210 | C | — | 3.5 | 96.8 | [ |
300 | γ-Al2O3 | 1 | 22 | 98 | [ | |
250 | BEA | 16.6 | — | 91.8 | [ | |
Cu | 275 | SiO2 | 18 | <3 | 100 | [ |
250 | BEA | 16.6 | — | 75.5 | [ | |
275 | SiO2 | — | 0.7 | 67.0 | [ |
Table 1 Catalytic performance of single-component metal based catalysts in the selective hydrodechlorination of 1,2-DCE to ethylene
活性组分 | 反应温度/℃ | 载体 | 反应时间/h | 转化率/% | 乙烯选择性/% | 文献 |
---|---|---|---|---|---|---|
Pd | 250 | γ-Al2O3 | 1 | 75 | <5 | [ |
250 | γ-Al2O3 | — | 12.8 | 0.1 | [ | |
170 | TiO2 | 4 | 0.09 | 2.47 | [ | |
170 | SiO2 | 4 | 0.08 | 0.7 | [ | |
170 | C | 4 | 0.12 | 3.81 | [ | |
270 | ZrO2 | 1 | 4.5 | 5.8 | [ | |
Pt | 250 | TiO2 | 21 | <2 | 3.6 | [ |
275 | C | 14 | 4.0 | 6.0 | [ | |
Ru | 250 | SiO2 | — | — | 53.5 | [ |
Rh | 200 | SiO2 | 3.3 | 4.0 | 0 | [ |
300 | γ-Al2O3 | 10 | — | 4.4 | [ | |
Ag | 270 | ZrO2 | 1 | 0.7 | 29.3 | [ |
250 | γ-Al2O3 | — | 1.8 | 46.8 | [ | |
Ni | 210 | C | — | 3.5 | 96.8 | [ |
300 | γ-Al2O3 | 1 | 22 | 98 | [ | |
250 | BEA | 16.6 | — | 91.8 | [ | |
Cu | 275 | SiO2 | 18 | <3 | 100 | [ |
250 | BEA | 16.6 | — | 75.5 | [ | |
275 | SiO2 | — | 0.7 | 67.0 | [ |
载体 | 底物 | 活性组分 | 反应温度/℃ | 原料转化率/% | 目标烯烃产物 | 烯烃选择性/% | 文献 |
---|---|---|---|---|---|---|---|
SiO2 | 1,2-DCE | Pt16Cu84 | 350 | <15 | C2H4 | 91 | [ |
1,2-DCE | Pd1.5Ag3.0 | 300 | — | C2H4 | 100 | [ | |
1,2-DCE | Pt 1Sn3 | 200 | 1.0 | C2H4 | 96 | [ | |
γ-Al2O3 | 1,2-DCE | Pd0.13 Ag0.84 | 250 | 8.9 | C2H4 | 94.6 | [ |
1,2-DCE | Rh、Ni | 300 | 37 | C2H4 | >95 | [ | |
1,2-DCE | Pd1Cu3 | 250 | 5.5 | C2H4 | >80 | [ | |
BEA | 1,2-DCE | Ni2.0Ag2.0 | 250 | — | C2H4 | 100 | [ |
SBA-15 | 1,2-DCE | Ni | 300 | 38.1 | C2H4 | >95 | [ |
HMS | 1,2-DCE | Ni | 300 | 39.2 | C2H4 | >95 | [ |
MCM-41 | 1,2-DCE | Ni | 300 | 40.2 | C2H4 | >95 | [ |
TiO2 | 1,2-DCE | AgPd0.35 | 170 | 0.21 | C2H4 | 97.3 | [ |
CeO2 | TCE | Pt | 300 | 12 | C2H4 | 40 | [ |
Ce0.5Zr0.5O2 | 1,2-DCE | Ni | 300 | 64.2 | C2H4 | >90 | [ |
活性炭 | 1,2-DCE | AgPd0.6 | 170 | 0.05 | C2H4 | 82 | [ |
CFC-113 | Ru | 200 | 33.5 | CTFE | 96.1 | [ | |
CF3OCFClCF2Cl | Ru | 250 | 29 | CF3OCF=CF2 | 97 | [ | |
CF3OCFClCF2Cl | Ni | 300 | 6 | CF3OCF=CF2 | 86 | [ | |
CF3OCFClCF2Cl | Pd1Ru8 | 250 | 73 | CF3OCF=CF2 | 89 | [ | |
1,2-DCE | Ni | 230 | — | C2H4 | 97 | [ | |
1,2-DCE | Pd05Ni95 | 260 | <2 | C2H4 | 100 | [ | |
CTFE | Pd | 250 | 76 | TrFE | 80 | [ | |
CTFE | Pd-K | 250 | 90 | TrFE | 85 | [ |
Table 2 Catalytic performance of metal catalysts with different supports in the SHDC to olefins
载体 | 底物 | 活性组分 | 反应温度/℃ | 原料转化率/% | 目标烯烃产物 | 烯烃选择性/% | 文献 |
---|---|---|---|---|---|---|---|
SiO2 | 1,2-DCE | Pt16Cu84 | 350 | <15 | C2H4 | 91 | [ |
1,2-DCE | Pd1.5Ag3.0 | 300 | — | C2H4 | 100 | [ | |
1,2-DCE | Pt 1Sn3 | 200 | 1.0 | C2H4 | 96 | [ | |
γ-Al2O3 | 1,2-DCE | Pd0.13 Ag0.84 | 250 | 8.9 | C2H4 | 94.6 | [ |
1,2-DCE | Rh、Ni | 300 | 37 | C2H4 | >95 | [ | |
1,2-DCE | Pd1Cu3 | 250 | 5.5 | C2H4 | >80 | [ | |
BEA | 1,2-DCE | Ni2.0Ag2.0 | 250 | — | C2H4 | 100 | [ |
SBA-15 | 1,2-DCE | Ni | 300 | 38.1 | C2H4 | >95 | [ |
HMS | 1,2-DCE | Ni | 300 | 39.2 | C2H4 | >95 | [ |
MCM-41 | 1,2-DCE | Ni | 300 | 40.2 | C2H4 | >95 | [ |
TiO2 | 1,2-DCE | AgPd0.35 | 170 | 0.21 | C2H4 | 97.3 | [ |
CeO2 | TCE | Pt | 300 | 12 | C2H4 | 40 | [ |
Ce0.5Zr0.5O2 | 1,2-DCE | Ni | 300 | 64.2 | C2H4 | >90 | [ |
活性炭 | 1,2-DCE | AgPd0.6 | 170 | 0.05 | C2H4 | 82 | [ |
CFC-113 | Ru | 200 | 33.5 | CTFE | 96.1 | [ | |
CF3OCFClCF2Cl | Ru | 250 | 29 | CF3OCF=CF2 | 97 | [ | |
CF3OCFClCF2Cl | Ni | 300 | 6 | CF3OCF=CF2 | 86 | [ | |
CF3OCFClCF2Cl | Pd1Ru8 | 250 | 73 | CF3OCF=CF2 | 89 | [ | |
1,2-DCE | Ni | 230 | — | C2H4 | 97 | [ | |
1,2-DCE | Pd05Ni95 | 260 | <2 | C2H4 | 100 | [ | |
CTFE | Pd | 250 | 76 | TrFE | 80 | [ | |
CTFE | Pd-K | 250 | 90 | TrFE | 85 | [ |
活性组分 | 助剂 | 催化剂制备方法 | 反应温度/℃ | 反应底物 | 转化率/% | 目标烯烃产物 | 乙烯选择性/% | 文献 |
---|---|---|---|---|---|---|---|---|
Pd | Ag | 光沉积法 | 250 | 1,2-DCE | 1.2 | C2H4 | 90 | [ |
浸渍法 | <2 | 68 | ||||||
Pt | — | 热熔法 | 300 | TCE | 10 | C2H4 | 48 | [ |
浸渍法 | 12 | 40 | ||||||
Pt | Sn | 表面还原法 | 200 | 1,2-DCE | 0.6 | C2H4 | 75 | [ |
浸渍法 | 0.7 | 91 | ||||||
Pt | Cu | 表面还原法 | 350 | 1,2-DCE | 29 | C2H4 | 91 | [ |
浸渍法 | 20 | 60 | ||||||
Pd | Cu | 沉淀-还原法 | 250 | 1,2-DCE | 11.3 | C2H4 | 96 | [ |
浸渍法 | 5.3 | 80 |
Table 3 Catalytic performance of the supported catalysts with different preparation methods in SHDC to olefins
活性组分 | 助剂 | 催化剂制备方法 | 反应温度/℃ | 反应底物 | 转化率/% | 目标烯烃产物 | 乙烯选择性/% | 文献 |
---|---|---|---|---|---|---|---|---|
Pd | Ag | 光沉积法 | 250 | 1,2-DCE | 1.2 | C2H4 | 90 | [ |
浸渍法 | <2 | 68 | ||||||
Pt | — | 热熔法 | 300 | TCE | 10 | C2H4 | 48 | [ |
浸渍法 | 12 | 40 | ||||||
Pt | Sn | 表面还原法 | 200 | 1,2-DCE | 0.6 | C2H4 | 75 | [ |
浸渍法 | 0.7 | 91 | ||||||
Pt | Cu | 表面还原法 | 350 | 1,2-DCE | 29 | C2H4 | 91 | [ |
浸渍法 | 20 | 60 | ||||||
Pd | Cu | 沉淀-还原法 | 250 | 1,2-DCE | 11.3 | C2H4 | 96 | [ |
浸渍法 | 5.3 | 80 |
Fig.11 Catalytic performance of Pd-Ag/Al2O3 catalysts prepared by co-impregnation and surface reduction in the 1,2-DCE selective hydrodechlorination[65]
离子态/金属态 | 电极电势/V |
---|---|
Cu2+/Cu | 0.34 |
Ag+/Ag | 0.80 |
Pd2+/Pd | 0.99 |
Ru3+/Ru | 0.38 |
Pt2+/Pt | 1.19 |
Au+/Au | 1.52 |
Ir3+/Ir | 1.16 |
Table 4 The standard electrode potential of different metals
离子态/金属态 | 电极电势/V |
---|---|
Cu2+/Cu | 0.34 |
Ag+/Ag | 0.80 |
Pd2+/Pd | 0.99 |
Ru3+/Ru | 0.38 |
Pt2+/Pt | 1.19 |
Au+/Au | 1.52 |
Ir3+/Ir | 1.16 |
1 | 陈浩, 詹小燕, 郭振宇. 乙烯产业发展现状及趋势[J]. 石化技术与应用, 2020, 38(6): 363-366. |
Chen H, Zhan X Y, Guo Z Y. Development status and trend analysis of ethylene industry[J]. Petrochemical Technology & Application, 2020, 38(6): 363-366. | |
2 | 黄格省, 胡杰, 李锦山, 等. 我国煤制烯烃技术发展现状与趋势分析[J]. 化工进展, 2020, 39(10): 3966-3974. |
Huang G S, Hu J, Li J S, et al. Development status and trend of coal-to-olefins technology[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3966-3974. | |
3 | 张世杰, 吴秀章, 刘勇, 等. 甲醇制烯烃工艺及工业化最新进展[J]. 现代化工, 2017, 37(8): 1-6. |
Zhang S J, Wu X Z, Liu Y, et al. Latest progress of methanol to olefin process and industrialization[J]. Modern Chemical Industry, 2017, 37(8): 1-6. | |
4 | Xing Y N, Bi G Y, Pan X L, et al. Sub-nanometer Pt2In3 intermetallics as ultra-stable catalyst for propane dehydrogenation[J]. Journal of Energy Chemistry, 2023, 83: 304-312. |
5 | Wang Z K, Han W F, Tang H D, et al. Preparation of N-doped ordered mesoporous carbon and catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride[J]. Microporous and Mesoporous Materials, 2019, 275: 200-206. |
6 | Dzhabarov E G, Petrukhina N N. Hydrodechlorination of 1,4-dichlorobenzene over unsupported sulfide catalysts[J]. Petroleum Chemistry, 2022, 62(11): 1334-1342. |
7 | Hu T, Liu T T, Xu C Y, et al. Simultaneous construction of silica nanotubes loaded with Pd nanoparticles for catalytic hydrodechlorination of chlorophenols[J]. ACS Applied Nano Materials, 2021, 4(10): 10692-10700. |
8 | Ball M R, Rivera-Dones K R, Stangland E, et al. Hydrodechlorination of 1,2-dichloroethane on supported AgPd catalysts[J]. Journal of Catalysis, 2019, 370: 241-250. |
9 | Meng B C, Sun Z Y, Ma J P, et al. Selective liquid-phase hydrodechlorination of chlorotrifluoroethylene over palladium-supported catalysts: activity and deactivation[J]. Catalysis Letters, 2010, 138(1): 68-75. |
10 | 王越, 冯钰钰, 胡晨星, 等. 催化加氢脱氯催化剂的研究进展[J]. 石油化工, 2022, 51(4): 453-458. |
Wang Y, Feng Y Y, Hu C X, et al. Research progress of hydrodechlorination catalysts for organic chlorides[J]. Petrochemical Technology, 2022, 51(4): 453-458. | |
11 | Xie H, Howe J Y, Schwartz V, et al. Hydrodechlorination of 1,2-dichloroethane catalyzed by dendrimer-derived Pt-Cu/SiO2 catalysts[J]. Journal of Catalysis, 2008, 259(1): 111-122. |
12 | Ohnishi R, Wang W L, Ichikawa M. Selective hydrodechlorination of CFC-113 on Bi- and Tl-modified palladium catalysts[J]. Applied Catalysis A: General, 1994, 113(1): 29-41. |
13 | Gregori M, Fornasari G, Marchionni G, et al. Hydrogen-assisted dechlorination of CF3OCFCl—CF2Cl to CF3OCF=CF2 over different metal-supported catalysts[J]. Applied Catalysis A: General, 2014, 470: 123-131. |
14 | 王志勤, 万海琴, 李丽媛, 等. Al2O3负载Pd-Cu催化剂催化1,2-二氯乙烷加氢脱氯性能[J]. 环境化学, 2012, 31(2): 144-149. |
Wang Z Q, Wan H Q, Li L Y, et, al. Catalytic hydrodechlorination of 1,2-dichloroehtane over Pd-Cu/γ-Al2O3 catalysts[J]. Environmental Chemistry, 2012, 31(2): 144-149. | |
15 | Sun J Y, Han Y X, Fu H Y, et al. Selective hydrodechlorination of 1,2-dichloroethane catalyzed by trace Pd decorated Ag/Al2O3 catalysts prepared by galvanic replacement[J]. Applied Surface Science, 2018, 428: 703-709. |
16 | Han Y X, Sun J Y, Fu H Y, et al. Highly selective hydrodechlorination of 1,2-dichloroethane to ethylene over Ag-Pd/ZrO2 catalysts with trace Pd[J]. Applied Catalysis A: General, 2016, 519: 1-6. |
17 | Han Y X, Zhou J, Wang W J, et al. Enhanced selective hydrodechlorination of 1,2-dichloroethane to ethylene on Pt-Ag/TiO2 catalysts prepared by sequential photodeposition[J]. Applied Catalysis B: Environmental, 2012, 125: 172-179. |
18 | Vadlamannati L S, Kovalchuk V I, d'Itri J L. Dechlorination of 1,2-dichloroethane catalyzed by Pt-Cu/C: unraveling the role of each metal[J]. Catalysis Letters, 1999, 58(4): 173-178. |
19 | Bozzelli J W, Chen Y M, Chuang S S C. Catalytic hydrodechlorination of 1,2-dichloroethane and trichloroethylene over Rh/SiO2 catalysts[J]. Chemical Engineering Communications, 1992, 115(1): 1-11. |
20 | Ning X, Wang H M, Zhou G H, et al. Selective catalytic hydrodechlorination of 1,2-dichloroethane to ethylene over Ni-Rh nanoparticle catalysts supported on γ-Al2O3 [J]. ACS Applied Nano Materials, 2023, 6(1): 390-397. |
21 | Śrębowata A, Sadowska M, Juszczyk W, et al. Hydrogen-assisted dechlorination of 1,2-dichloroethane over silica-supported nickel-ruthenium catalysts[J]. Catalysis Communications, 2007, 8(1): 11-15. |
22 | Mori T, Yasuoka T, Morikawa Y. Hydrodechlorination of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) over supported ruthenium and other noble metal catalysts[J]. Catalysis Today, 2004, 88(3/4): 111-120. |
23 | Śrębowata A, Juszczyk W, Kaszkur Z, et al. Hydrodechlorination of 1,2-dichloroethane and dichlorodifluoromethane over Ni/C catalysts: the effect of catalyst carbiding[J]. Applied Catalysis A: General, 2007, 319: 181-192. |
24 | Śrębowata A, Baran R, Casale S, et al. Catalytic conversion of 1,2-dichloroethane over bimetallic Cu-Ni loaded BEA zeolites[J]. Applied Catalysis B: Environmental, 2014, 152: 317-327. |
25 | Wei X, Wang A Q, Yang X F, et al. Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1,2-dichloroethane[J]. Applied Catalysis B: Environmental, 2012, 121: 105-114. |
26 | 郭庆会. 过渡金属磷化物催化剂用于三氯乙烯加氢脱氯的研究[D]. 南京: 东南大学, 2015. |
Guo Q H. Study on the hydrodechlorination of trichloroethylene over transition mental phosphides catalysts[D]. Nanjing: Southeast University, 2015. | |
27 | Tian S, Mao W, Sun P F, et al. Breakthrough synthesis of 2,3,3,3-tetrafluoropropene via hydrogen-assisted selective dehydrochlorination of 1,1,1,2-tetrafluoro-2-chloropropane over nickel phosphides[J]. Journal of Catalysis, 2020, 391: 366-377. |
28 | Sarıbıyık O Y, Weilach C, Serin S, et al. The effect of shape-controlled Pt and Pd nanoparticles on selective catalytic hydrodechlorination of trichloroethylene[J]. Catalysts, 2020, 10(11): 1314. |
29 | Lu M H, Sun J Z, Zhang D B, et al. Highly selective hydrodechlorination of CCl4 into CHCl3 on Ag-Pd/carbon catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100(1): 99-103. |
30 | Baran R, Kamińska I I, Śrębowata A, et al. Selective hydrodechlorination of 1,2-dichloroethane on NiSiBEA zeolite catalyst: influence of the preparation procedure on a high dispersion of Ni centers[J]. Microporous and Mesoporous Materials, 2013, 169: 120-127. |
31 | Śrębowata A, Juszczyk W, Kaszkur Z, et al. Hydrodechlorination of 1,2-dichloroethane on active carbon supported palladium-nickel catalysts[J]. Catalysis Today, 2007, 124(1/2): 28-35. |
32 | Ning X, Sun Y H, Fu H Y, et al. N-doped porous carbon supported Ni catalysts derived from modified Ni-MOF-74 for highly effective and selective catalytic hydrodechlorination of 1,2-dichloroethane to ethylene[J]. Chemosphere, 2020, 241: 124978. |
33 | 宁欣. 限域型Ni基催化剂的制备及其在气相催化加氢脱氯中的行为研究[D]. 南京: 南京大学, 2019. |
Ning X. Preparation and catalytic hydrodechlorination behaviours of confined Ni-based catalysts[D]. Nanjing: Nanjing University, 2019. | |
34 | Choi Y H, Lee W Y. Effect of second metals and Cu content on catalyst performance of Ni-Cu/SiO2 in the hydrodechlorination of 1,1,2-trichloroethane into vinyl chloride monomer[J]. Journal of Molecular Catalysis A: Chemical, 2001, 174(1/2): 193-204. |
35 | Heinrichs B, Delhez P, Schoebrechts J P, et al. Pd-Ag/SiO2 sol-gel catalysts designed for selective conversion of chlorinated alkanes into alkenes[J]. Studies in Surface Science and Catalysis, 1998, 118: 707-716. |
36 | Rhodes W D, Lázár K, Kovalchuk V I, et al. Hydrogen-assisted 1,2-dichloroethane dechlorination catalyzed by Pt-Sn/SiO2: effect of the Pt/Sn atomic ratio[J]. Journal of Catalysis, 2002, 211(1): 173-182. |
37 | Barrabés N, Föttinger K, Dafinov A, et al. Study of Pt-CeO2 interaction and the effect in the selective hydrodechlorination of trichloroethylene[J]. Applied Catalysis B: Environmental, 2009, 87(1/2): 84-91. |
38 | Śrębowata A, Zielińska I, Baran R, et al. Ag-Ni bimetallic SiBEA zeolite as an efficient catalyst of hydrodechlorination of 1,2-dichloroethane towards ethylene[J]. Catalysis Communications, 2015, 69: 154-160. |
39 | Kamińska I I, Śrębowata A. Active carbon-supported nickel-palladium catalysts for hydrodechlorination of 1,2-dichloroethane and 1,1,2-trichloroethene[J]. Research on Chemical Intermediates, 2015, 41(12): 9267-9280. |
40 | 项梦. 氮掺杂炭材料中氮物种的调控及其负载Pd催化剂在加氢脱氯反应中的应用[D]. 杭州: 浙江工业大学, 2018. |
Xiang M. Regulation of nitrogen species in nitrogen doped carbon materials and their hydrodechlorination application used as supports for Pd catalysts[D]. Hangzhou: Zhejiang University of Technology, 2018. | |
41 | 赵重阳, 项梦, 张庆, 等. 助剂对Pd/AC催化剂催化三氟氯乙烯加氢脱氯的影响[J]. 化学反应工程与工艺, 2017, 33(2): 144-150. |
Zhao C Y, Xiang M, Zhang Q, et al. Effects of promoters on performance of Pd/AC catalysts in hydrodechlorination of chlorotrifluoroethylene[J]. Chemical Reaction Engineering and Technology, 2017, 33(2): 144-150. | |
42 | 冯雪涛, 吕剑. 负载型加氢脱氯合成HFCs催化剂的研究进展[J]. 工业催化, 2003, 11(8): 1-7. |
Feng X T, Lyu J. Advances in hydrodechlorination of CFCs for synthesis of HFCs over supported catalyst[J]. Industrial Catalysis, 2003, 11(8): 1-7. | |
43 | 郑肖, 聂彦平, 肖强, 等. CFC-115加氢脱氯制HFC-125 Pd/C催化剂制备研究[J]. 现代化工, 2009, 29(S1): 151-154. |
Zheng X, Nie Y P, Xiao Q, et al. Preparation of Pd/C catalysts for hydrodechlorination of CFC-115 into HFC-125[J]. Modern Chemical Industry, 2009, 29(S1): 151-154. | |
44 | 赵重阳, 宋妍妍, 韩文锋, 等. 三氟乙烯合成工艺及催化剂研究进展[J]. 有机氟工业, 2015(2): 46-52. |
Zhao C Y, Song Y Y, Han W F, et al. Research progress in synthetic technology of trifluoroethylene and catalyst[J]. Organo Fluorine Industry, 2015(2): 46-52. | |
45 | Bonarowska M, Wojciechowska M, Zieliński M, et al. Hydrodechlorination of tetrachloromethane over palladium catalysts supported on mixed MgF2-MgO carriers[J]. Molecules, 2016, 21(12): 1620. |
46 | Murwani I K, Kemnitz E, Skapin T, et al. Mechanistic investigation of the hydrodechlorination of 1,1,1,2-tetrafluorodichloroethane on metal fluoride-supported Pt and Pd[J]. Catalysis Today, 2004, 88(3/4): 153-168. |
47 | 曹育才. 氟氯烃选择性脱氯加氢反应的研究[D]. 杭州: 浙江大学, 2002. |
Cao Y C. Study on the selective hydrodechlorination of fluorochlorocarbons[D]. Hangzhou: Zhejiang University, 2002. | |
48 | Lero L, Costa J L, Wilmet V, et al. Catalytic composition for hydrogenation of chlorofluoroalkenes: US5089454[P]. 1992-02-18. |
49 | Moon D J, Chung M J, Park K Y, et al. Deactivation of Pd catalysts in the hydrodechlorination of chloropentafluoroethane[J]. Applied Catalysis A: General, 1998, 168(1): 159-170. |
50 | Patil P T, Dimitrov A, Kirmse H, et al. Non-aqueous sol-gel synthesis, characterization and catalytic properties of metal fluoride supported palladium nanoparticles[J]. Applied Catalysis B: Environmental, 2008, 78(1/2): 80-91. |
51 | Luebke D R, Vadlamannati L S, Kovalchuk V I, et al. Hydrodechlorination of 1,2-dichloroethane catalyzed by Pt-Cu/C: effect of catalyst pretreatment[J]. Applied Catalysis B: Environmental, 2002, 35(3): 211-217. |
52 | Li L, Wang X D, Wang A Q, et al. Relationship between adsorption properties of Pt-Cu/SiO2 catalysts and their catalytic performance for selective hydrodechlorination of 1,2-dichloroethane to ethylene[J]. Thermochimica Acta, 2009, 494(1/2): 99-103. |
53 | Xu L, Stangland E, Dumesic J A, et al. Mechanistic study of 1,2-dichloroethane hydrodechlorination on Cu-rich Pt-Cu alloys: combining reaction kinetics experiments with DFT calculations and microkinetic modeling[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(4): 1509-1523. |
54 | Xu L, Stangland E E, Mavrikakis M. Ethylene versus ethane: a DFT-based selectivity descriptor for efficient catalyst screening[J]. Journal of Catalysis, 2018, 362: 18-24. |
55 | 韩玉香. 负载双金属催化剂的调控及其催化加氢性能研究[D]. 南京: 南京大学, 2013. |
Han Y X. Structure adjustment and catalytic hydrogenation properties of supported bimetallic catalysts[D]. Nanjing: Nanjing University, 2013. | |
56 | 孙敬雅. 负载型Pd催化剂的尺寸、构型、电子结构调控及其结构——催化效率关联机制研究[D]. 南京: 南京大学, 2018. |
Sun J Y. Study on size, geometry and electronic structure of supported palladium catalysts and their structure—catalytic property relationships[D]. Nanjing: Nanjing University, 2018. | |
57 | Xu L, Stangland E E, Mavrikakis M. A DFT study of chlorine coverage over late transition metals and its implication on 1,2-dichloroethane hydrodechlorination[J]. Catalysis Science & Technology, 2018, 8(6): 1555-1563. |
58 | Rhodes W D, Margitfalvi J L, Borbáth I, et al. Hydrogen-assisted 1,2-dichloroethane dechlorination catalyzed by Pt-Sn/SiO2 catalysts of different preparations[J]. Journal of Catalysis, 2005, 230(1): 86-97. |
59 | Fernandez-Ruiz C, Bedia J, Andreoli S, et al. Selectivity to olefins in the hydrodechlorination of chloroform with activated carbon-supported palladium catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20592-20600. |
60 | Liu S C, Fernandez-Ruiz C, Iglesias-Juez A, et al. Structure sensitivity reaction of chloroform hydrodechlorination to light olefins using Pd catalysts supported on carbon nanotubes and carbon nanofibers[J]. Journal of Colloid and Interface Science, 2023, 648: 427-439. |
61 | González C A, Bartoszek M, Martin A, et al. Hydrodechlorination of light organochlorinated compounds and their mixtures over Pd/TiO2-washcoated minimonoliths[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 2826-2835. |
62 | Epron F, Gauthard F, Pinéda C, et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution: role of the interaction between copper and platinum in the reaction[J]. Journal of Catalysis, 2001, 198(2): 309-318. |
63 | Lafaye G, Micheaud-Especel C, Montassier C, et al. Characterization of bimetallic rhodium-germanium catalysts prepared by surface redox reaction[J]. Applied Catalysis A: General, 2002, 230(1/2): 19-30. |
64 | Gauthard F, Epron F, Barbier J. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water: effect of copper, silver, or gold addition[J]. Journal of Catalysis, 2003, 220(1): 182-191. |
65 | Han Y X, Gu G F, Sun J Y, et al. Selective hydrodechlorination of 1,2-dichloroethane to ethylene over Pd-Ag/Al2O3 catalysts prepared by surface reduction[J]. Applied Surface Science, 2015, 355: 183-190. |
66 | Egerton T A, Mattinson J A. Effects of particle dispersion on photocatalysis probed by the effect of platinum on dichloroacetic acid oxidation by P25 and nanoparticulate rutile[J]. Applied Catalysis B: Environmental, 2010, 99(3/4): 407-412. |
67 | Ismail A A, Al-Sayari S A, Bahnemann D W. Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation[J]. Catalysis Today, 2013, 209: 2-7. |
68 | Sun Y G, Xia Y N. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction[J]. Nano Letters, 2003, 3(11): 1569-1572. |
69 | Barrabes N, Cornado D, Foettinger K, et al. Hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derived catalysts[J]. Journal of Catalysis, 2009, 263(2): 239-246. |
70 | Zanella R. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea[J]. Journal of Catalysis, 2004, 222(2): 357-367. |
71 | Rehman A, Chughtai A, Ijaz A, et al. Evaluation of base for catalytic hydrodechlorination of 2,4-dichlorophenol in cocurrent downflow contactor reactor[J]. Arabian Journal for Science and Engineering, 2017, 42(4): 1419-1425. |
72 | Wiersma A, van de Sandt E J A X, den Hollander M A, et al. Comparison of the performance of activated carbon-supported noble metal catalysts in the hydrogenolysis of CCl2F2 [J]. Journal of Catalysis, 1998, 177(1): 29-39. |
73 | Kulkarni P P, Deshmukh S S, Kovalchuk V I, et al. Hydrodechlorination of dichlorodifluoromethane on carbon-supported group Ⅷ noble metal catalysts[J]. Catalysis Letters, 1999, 61(3): 161-166. |
74 | Ribeiro F H, Gerken C A, Somorjai G A, et al. Turnover rate and kinetic mechanism for the reaction of hydrodechlorination of 1,1-dichlorotetrafluoroethane (CF3—CFCl2) over a polycrystalline Pd foil[J]. Catalysis Letters, 1997, 45(3): 149-153. |
75 | Ribeiro F H, Gerken C A, Rupprechter G, et al. Structure insensitivity and effect of sulfur in the reaction of hydrodechlorination of 1,1-dichlorotetrafluoroethane (CF3—CFCl2) over Pd catalysts[J]. Journal of Catalysis, 1998, 176(2): 352-357. |
76 | Shao Y, Xu Z Y, Wan H Q, et al. Influence of ZrO2 properties on catalytic hydrodechlorination of chlorobenzene over Pd/ZrO2 catalysts[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 135-140. |
77 | Martin-Martinez M, Rodriguez J J, Baker, R T, et al. Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins[J]. Chemical Engineering Journal, 2020, 397: 125479. |
78 | 李林. 吸附量热装置的建立及其在金属催化研究中的应用[D]. 大连: 中国科学院研究生院(大连化学物理研究所), 2005. |
Li L. The setup of a microcalorimetric device and its application in the research of metal catalysis[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2005. | |
79 | Celik G, Ailawar S A, Gunduz S, et al. Aqueous-phase hydrodechlorination of trichloroethylene over Pd-based swellable organically-modified silica (SOMS): catalyst deactivation due to chloride anions[J]. Applied Catalysis B: Environmental, 2018, 239: 654-664. |
80 | Forni P, Prati L, Rossi M. Catalytic dehydrohalogenation of polychlorinated biphenyls (part Ⅱ): Studies on a continuous process[J]. Applied Catalysis B: Environmental, 1997, 14(1/2): 49-53. |
81 | Concibido N C, Okuda T, Nishijima W, et al. Deactivation and reactivation of Pd/C catalyst used in repeated batch hydrodechlorination of PCE[J]. Applied Catalysis B: Environmental, 2007, 71(1/2): 64-69. |
82 | Zhang W L, Huang Y, Gong T, et al. Activated carbon supported palladium-iron oxide catalysts fabricated by atomic layer deposition for hydrodechlorination of 1,4-dichlorobenzene[J]. Catalysis Communications, 2017, 93: 47-52. |
83 | Wiersma A, van de Sandt E J A X, Makkee M, et al. Process for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32)[J]. Catalysis Today, 1996, 27(1/2): 257-264. |
84 | Wiersma A, van de Sandt E J A X, Makkee M, et al. Deactivation of palladium on activated carbon in the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32)[J]. Applied Catalysis A: General, 2001, 212(1/2): 223-238. |
85 | Tarach K A, Śrębowata A, Kowalewski E, et al. Nickel loaded zeolites FAU and MFI: characterization and activity in water-phase hydrodehalogenation of TCE[J]. Applied Catalysis A: General, 2018, 568: 64-75. |
86 | Early K, Kovalchuk V I, Lonyi F, et al. Hydrodechlorination of 1,1-dichlorotetrafluoroethane and dichlorodifluoromethane catalyzed by Pd on fluorinated aluminas: the role of support material[J]. Journal of Catalysis, 1999, 182(1): 219-227. |
87 | 陆子薇, 廖湘洲, 粟小理, 等. 三氟三氯乙烷加氢脱氯Pd-Cu催化剂失活分析[J]. 化工进展, 2023, 42(1): 282-288. |
Lu Z W, Liao X Z, Li X L, et al. Deactivation of Pd-Cu catalyst for hydrodechlorination of trifluorotrichloroethane[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 282-288. | |
88 | Forzatti P, Lietti L. Catalyst deactivation[J]. Catalysis Today, 1999, 52(2/3): 165-181. |
89 | van de Sandt E J A X, Wiersma A, Makkee M, et al. Palladium black as model catalyst in the hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32)[J]. Applied Catalysis A: General, 1997, 155(1): 59-73. |
90 | Gampine A, Eyman D P. Catalytic hydrodechlorination of chlorocarbons (2): Ternary oxide supports for catalytic conversions of 1,2-dichlorobenzene[J]. Journal of Catalysis, 1998, 179(1): 315-325. |
91 | Arevalo-Bastante A, Martin-Martinez M, Álvarez-Montero M A, et al. Properties of carbon-supported precious metals catalysts under reductive treatment and their Influence in the hydrodechlorination of dichloromethane[J]. Catalysts, 2018, 8(12): 644. |
[1] | Yuhao TANG, Yingying ZHANG, Zhiwei ZHAO, Mengyue LU, Feifei ZHANG, Xiaoqing WANG, Jiangfeng YANG. Ultra-microporous Sc/In-CPM-66A with low-polar pore surfaces for efficient separation of CH4/N2 [J]. CIESC Journal, 2024, 75(9): 3210-3220. |
[2] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[3] | Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene [J]. CIESC Journal, 2024, 75(7): 2565-2573. |
[4] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[5] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[6] | Yangke XIAO, Yinlong CHANG, Ping LI, Wenjun WANG, Bogeng LI, Pingwei LIU. Review on polyolefin elastomers with dynamic-chemical cross-linking [J]. CIESC Journal, 2024, 75(4): 1394-1413. |
[7] | Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization [J]. CIESC Journal, 2024, 75(4): 1118-1136. |
[8] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[9] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[10] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[11] | Xiaorong MENG, Chi SUN, Yiwen LONG. Electro-membrane extraction of Li(Ⅰ) by Cyanex923/TBP/PHEN in collaboration with 2-thiophenecarbonyltrifluoroacetone [J]. CIESC Journal, 2024, 75(12): 4606-4616. |
[12] | Jiawen LIU, Wencheng XIA, Feng WU, Yaoli PENG, Guangyuan XIE. Mechanism study on mechanochemical solid-phase oxidation recovery of spent LiFePO4 batteries [J]. CIESC Journal, 2024, 75(10): 3775-3782. |
[13] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[14] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[15] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 483
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||