CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4185-4193.DOI: 10.11949/0438-1157.20250018
• Surface and interface engineering • Previous Articles Next Articles
Received:2025-01-04
Revised:2025-02-27
Online:2025-09-17
Published:2025-08-25
Contact:
Qiaoli LIN
通讯作者:
林巧力
作者简介:周玉祥(1999—),男,硕士研究生,zhouyuxiang_1127@163.com
基金资助:CLC Number:
Yuxiang ZHOU, Qiaoli LIN. Determination of surface tension via oscillating sessile drop method[J]. CIESC Journal, 2025, 76(8): 4185-4193.
周玉祥, 林巧力. 基于振荡座滴测定液滴表面张力的方法[J]. 化工学报, 2025, 76(8): 4185-4193.
Add to citation manager EndNote|Ris|BibTeX
| 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|
| 87.682 | 9.73 | 88.083 |
| 96.841 | 9.26 | 102.256 |
| 91.511 | 9.12 | 89.929 |
| 92.316 | 10.18 | 102.155 |
| 96.032 | 10.06 | 109.242 |
| 94.032 | 9.60 | 99.950 |
| 88.147 | 9.66 | 88.379 |
Table 1 Surface tension values from oscillatory drop frequencies extracted using 0.45 mm outer diameter needle
| 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|
| 87.682 | 9.73 | 88.083 |
| 96.841 | 9.26 | 102.256 |
| 91.511 | 9.12 | 89.929 |
| 92.316 | 10.18 | 102.155 |
| 96.032 | 10.06 | 109.242 |
| 94.032 | 9.60 | 99.950 |
| 88.147 | 9.66 | 88.379 |
| 针头外径/mm | 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|---|
| 0.45 | 87.682 | 9.7302 | 88.083 |
| 0.80 | 71.753 | 15.274 | 92.596 |
| 1.26 | 60.133 | 22.461 | 95.635 |
| 1.26 | 63.611 | 19.620 | 93.481 |
| 4.03 | 43.262 | 40.495 | 89.243 |
Table 2 Surface tension values calculated from different drop sizes and characteristic frequencies
| 针头外径/mm | 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|---|
| 0.45 | 87.682 | 9.7302 | 88.083 |
| 0.80 | 71.753 | 15.274 | 92.596 |
| 1.26 | 60.133 | 22.461 | 95.635 |
| 1.26 | 63.611 | 19.620 | 93.481 |
| 4.03 | 43.262 | 40.495 | 89.243 |
| 采集帧率/(帧/s) | 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|---|
| 1500 | 62.271 | 22.521 | 102.830 |
| 1500 | 60.065 | 22.674 | 96.323 |
| 1000 | 59.851 | 23.355 | 98.511 |
| 260 | 56.304 | 23.058 | 86.072 |
Table 3 Surface tension values calculated from characteristic frequencies at different frame rates (needle outer diameter 1.26 mm)
| 采集帧率/(帧/s) | 特征频率/Hz | 液滴体积/μl | 表面张力/(mN/m) |
|---|---|---|---|
| 1500 | 62.271 | 22.521 | 102.830 |
| 1500 | 60.065 | 22.674 | 96.323 |
| 1000 | 59.851 | 23.355 | 98.511 |
| 260 | 56.304 | 23.058 | 86.072 |
| 特征频率/Hz | 密度/(g/cm3) | 液滴体积/μl | 表面张力/(mN/m) | |
|---|---|---|---|---|
| 振荡座滴法 | 悬滴法 | |||
| 乙醇 | ||||
| 104.063 | 0.789 | 3.52 | 35.441 | 22.3 |
| 89.462 | 0.789 | 3.67 | 27.289 | 22.3 |
| 乙二醇 | ||||
| 89.761 | 1.113 | 5.10 | 53.852 | 44.7 |
Table 4 Surface tension measurement of ethanol and ethylene glycol: oscillating sessile drop versus pendant-drop method
| 特征频率/Hz | 密度/(g/cm3) | 液滴体积/μl | 表面张力/(mN/m) | |
|---|---|---|---|---|
| 振荡座滴法 | 悬滴法 | |||
| 乙醇 | ||||
| 104.063 | 0.789 | 3.52 | 35.441 | 22.3 |
| 89.462 | 0.789 | 3.67 | 27.289 | 22.3 |
| 乙二醇 | ||||
| 89.761 | 1.113 | 5.10 | 53.852 | 44.7 |
| 特征频率/Hz | 密度/(g/cm3) | 液滴体积/μl | 表面张力/(mN/m) | α | ||
|---|---|---|---|---|---|---|
| 式(5) | 式(6) | 式(7) | ||||
| 95.314 | 0.998 | 11.278 | 120.282 | 190.005 | 195.779 | 1.621 |
| 96.841 | 0.998 | 9.261 | 101.955 | 196.142 | 165.949 | 1.648 |
| 91.511 | 0.998 | 9.124 | 89.701 | 175.145 | 146.003 | 1.557 |
| 92.316 | 0.998 | 10.184 | 101.893 | 178.240 | 165.848 | 1.571 |
| 87.682 | 0.998 | 9.730 | 87.821 | 160.795 | 142.944 | 1.492 |
| 71.753 | 0.998 | 15.274 | 92.319 | 172.554 | 150.264 | 1.221 |
| 60.133 | 0.998 | 22.461 | 95.348 | 215.829 | 155.195 | 1.729 |
| 63.611 | 0.998 | 17.825 | 84.674 | 135.616 | 137.821 | 1.370 |
| 43.262 | 0.998 | 40.495 | 88.976 | 218.186 | 144.823 | 1.738 |
| 104.063 | 0.789① | 3.520 | 35.414 | 30.660 | 57.469 | 1.173 |
| 89.462 | 0.789① | 3.670 | 27.289 | 28.607 | 44.283 | 1.133 |
| 89.761 | 1.113② | 5.100 | 53.842 | 126.313 | 87.374 | 1.683 |
Table 5 Surface tension calculated by Eqs. (5)—(7) and α in Eq. (9)
| 特征频率/Hz | 密度/(g/cm3) | 液滴体积/μl | 表面张力/(mN/m) | α | ||
|---|---|---|---|---|---|---|
| 式(5) | 式(6) | 式(7) | ||||
| 95.314 | 0.998 | 11.278 | 120.282 | 190.005 | 195.779 | 1.621 |
| 96.841 | 0.998 | 9.261 | 101.955 | 196.142 | 165.949 | 1.648 |
| 91.511 | 0.998 | 9.124 | 89.701 | 175.145 | 146.003 | 1.557 |
| 92.316 | 0.998 | 10.184 | 101.893 | 178.240 | 165.848 | 1.571 |
| 87.682 | 0.998 | 9.730 | 87.821 | 160.795 | 142.944 | 1.492 |
| 71.753 | 0.998 | 15.274 | 92.319 | 172.554 | 150.264 | 1.221 |
| 60.133 | 0.998 | 22.461 | 95.348 | 215.829 | 155.195 | 1.729 |
| 63.611 | 0.998 | 17.825 | 84.674 | 135.616 | 137.821 | 1.370 |
| 43.262 | 0.998 | 40.495 | 88.976 | 218.186 | 144.823 | 1.738 |
| 104.063 | 0.789① | 3.520 | 35.414 | 30.660 | 57.469 | 1.173 |
| 89.462 | 0.789① | 3.670 | 27.289 | 28.607 | 44.283 | 1.133 |
| 89.761 | 1.113② | 5.100 | 53.842 | 126.313 | 87.374 | 1.683 |
| [1] | Wijshoff H. Drop dynamics in the inkjet printing process[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 20-27. |
| [2] | Basilio P A, Torres Rojas A M, Corvera Poiré E, et al. Stream of droplets as an actuator for oscillatory flows in microfluidics[J]. Microfluidics and Nanofluidics, 2019, 23(5): 64. |
| [3] | Haber E, Douvidzon M, Maayani S, et al. A liquid mirror resonator[J]. Micromachines (Basel), 2023, 14(3): 624. |
| [4] | Wu N, Dai J L, Micale F J. Dynamic surface tension measurement with a dynamic wilhelmy plate technique[J]. Journal of Colloid and Interface Science, 1999, 215(2): 258-269. |
| [5] | Kim D, Jeong M A, Kang K, et al. Gravitational effect on the advancing and receding angle of a 2D Cassie-Baxter droplet on a textured surface[J]. Langmuir, 2020, 36(21): 6061-6069. |
| [6] | Mills K C, Brooks R F. Measurements of thermophysical properties in high temperature melts[J]. Materials Science and Engineering: A, 1994, 178(1/2): 77-81. |
| [7] | Kitahata H, Tanaka R, Koyano Y, et al. Oscillation of a rotating levitated droplet: analysis with a mechanical model[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(6): 062904. |
| [8] | Xiao X, Hyers R W, Wunderlich R K, et al. Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement[J]. Applied Physics Letters, 2018, 113(1): 011903. |
| [9] | Fahimi K, Mädler L, Ellendt N. Measurement of surface tension with free-falling oscillating molten metal droplets: a numerical and experimental investigation[J]. Experiments in Fluids, 2023, 64(7): 133. |
| [10] | Strutt J W. Ⅵ. On the capillary phenomena of jets[J]. Proceedings of the Royal Society of London, 1879, 29(196/197/198/199): 71-97. |
| [11] | Lamb H. Hydrodynamics[M]. 6th ed. Cambridge: Cambridge University Press, 1932. |
| [12] | Milne A J B, Defez B, Cabrerizo-Vílchez M, et al. Understanding (sessile/constrained) bubble and drop oscillations[J]. Advances in Colloid and Interface Science, 2014, 203: 22-36. |
| [13] | Liang G T, Yu H B, Chen L Z, et al. Spreading and oscillation induced by liquid drop impacting onto sessile drop[J]. European Journal of Mechanics-B/Fluids, 2020, 79: 247-254. |
| [14] | Deepu P, Chowdhuri S, Basu S. Oscillation dynamics of sessile droplets subjected to substrate vibration[J]. Chemical Engineering Science, 2014, 118: 9-19. |
| [15] | Ding D, Bostwick J B. Pressure modes of the oscillating sessile drop[J]. Journal of Fluid Mechanics, 2022, 944: R1. |
| [16] | Korenchenko A E, Malkova J P. Numerical investigation of phase relationships in an oscillating sessile drop[J]. 2015, 27(10): 102104. |
| [17] | Singha P, Nguyen N K, Zhang J, et al. Oscillating sessile liquid marble — a tool to assess effective surface tension[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127176. |
| [18] | Mettu S, Chaudhury M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837. |
| [19] | Bashforth F, Adams J C. An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid[M]. Cambridge: Cambridge University Press, 1883. |
| [20] | 张禹负, 刘华. 一种水平旋转滴法测定接触角的方法及装置: 100380111C[P]. 2008-04-09. |
| Zhang Y F, Liu H. A method and device for measuring contact angle using horizontal rotating droplet method: 100380111C[P]. 2008-04-09. | |
| [21] | 周斌, 李思维, 陈志勇, 等. 完全轮廓法计算液体表面张力的改进[J]. 清华大学学报(自然科学版), 2016, 56(12): 1352-1356. |
| Zhou B, Li S W, Chen Z Y, et al. Full-profile fit pendent drop method for surface tension measurements[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(12): 1352-1356. | |
| [22] | de Ruiter J, Lagraauw R, van den Ende D, et al. Wettability-independent bouncing on flat surfaces mediated by thin air films[J]. Nature Physics, 2015, 11: 48-53. |
| [23] | Birdi K S. Handbook of Surface and Colloid Chemistry[M]. 2nd ed. Boca Raton, Fla.: CRC Press, 2003. |
| [24] | Costalonga M, Brunet P. Directional motion of vibrated sessile drops: a quantitative study[J]. Physical Review Fluids, 2020, 5(2): 023601. |
| [25] | McHale G, Elliott S J, Newton M I, et al. Levitation-free vibrated droplets: resonant oscillations of liquid marbles[J]. Langmuir, 2009, 25(1): 529-533. |
| [26] | Lim T, Han S, Chung J, et al. Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 431-441. |
| [27] | Sangiorgi R, Caracciolo G, Passerone A. Factors limiting the accuracy of measurements of surface tension by the sessile drop method[J]. Journal of Materials Science, 1982, 17(10): 2895-2901. |
| [28] | Sharp J S. Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures[J]. Soft Matter, 2012, 8(2): 399-407. |
| [29] | Korenchenko A E, Beskachko V P. Oscillations of a sessile droplet in open air[J]. Physics of Fluids, 2013, 25(11): 112106. |
| [30] | Sun Y Q, Yousefi E, Kunwar A, et al. Study of the interfacial reactions controlling the spreading of Al on Ni[J]. Applied Surface Science, 2022, 571: 151272. |
| [31] | Gale W F, Totemeier T C.Smithells Metals Reference Book[M]. 8th ed. Amsterdam: Elsevier, 2004. |
| [1] | Xinhuang YE, Jiahao XUE, Yulai ZHAO. Synthesis and characterization of polymerizable Gemini surfactants: stabilization of high internal phase emulsion [J]. CIESC Journal, 2025, 76(8): 4331-4340. |
| [2] | Mengyuan PENG, Jiaming LI, Min SHA, Ding ZHANG. Study on performance of quaternary ammonium fluorocarbon surfactant compound system [J]. CIESC Journal, 2025, 76(8): 4177-4184. |
| [3] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
| [4] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
| [5] | Chao LI, Haowen CHEN, Zhen HU, Chenghang WANG, Haozi LYU, Xianyang QIU. Mechanism of pulsed airflow-flexible porous coupling bubble formation [J]. CIESC Journal, 2024, 75(12): 4761-4769. |
| [6] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
| [7] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
| [8] | Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process [J]. CIESC Journal, 2022, 73(4): 1557-1565. |
| [9] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
| [10] | Yiran WANG, Chaoyang GUAN, Xiang GAO, Hongxia CHEN. Experimental study on boiling dynamics modulation by porous foam deaeration board [J]. CIESC Journal, 2022, 73(11): 4948-4956. |
| [11] | ZHAO Wenyi, KUANG Yiwu, WANG Wen, ZHANG Hongxing, MIAO Jianyin. Stability of condensing flow in a horizontal tube [J]. CIESC Journal, 2021, 72(S1): 257-265. |
| [12] | Yeming ZHU, Jinping LIU, Xiongwen XU, Dandan ZHU. Research on liquid film flow characteristics of vertical porous plate [J]. CIESC Journal, 2021, 72(8): 4081-4092. |
| [13] | CHEN Hongxia, LI Linhan, WANG Yiran, GUO Yuxiang, LIU Lin. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space [J]. CIESC Journal, 2021, 72(6): 3278-3287. |
| [14] | SONG Bennan, WU Chunmei, LI Yourong. Investigation on cluster distribution and phase transition of adsorption at solid-vapor interface [J]. CIESC Journal, 2021, 72(5): 2680-2687. |
| [15] | UTAKA Yoshio, XU Jingying, WANG Guozhuo, CHEN Zhihao. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells [J]. CIESC Journal, 2021, 72(4): 2276-2282. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
