CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1545-1558.DOI: 10.11949/0438-1157.20240958
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chengcheng XU1,3(), Suola SHAO2(
), Wenjian WEI1, Xu ZHENG2
Received:
2024-08-25
Revised:
2024-12-03
Online:
2025-05-12
Published:
2025-04-25
Contact:
Suola SHAO
通讯作者:
邵索拉
作者简介:
许成城(1994—),男,博士,讲师,chengchengxu_seu@163.com
基金资助:
CLC Number:
Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions[J]. CIESC Journal, 2025, 76(4): 1545-1558.
许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558.
型材 | 金属热强度范围/(W/(kg·℃)) |
---|---|
钢(柱型) | 0.6~1.3 |
钢(板型) | 0.9~1.4 |
钢(对流型) | 0.5~0.9 |
铜、铝及铜铝复合(柱翼型) | 1.8~3.9 |
铜、铝及铜铝复合(对流型) | 0.8~3.0 |
灰铸铁 | 0.3~0.45 |
Table 1 Metal thermal strength of different materials
型材 | 金属热强度范围/(W/(kg·℃)) |
---|---|
钢(柱型) | 0.6~1.3 |
钢(板型) | 0.9~1.4 |
钢(对流型) | 0.5~0.9 |
铜、铝及铜铝复合(柱翼型) | 1.8~3.9 |
铜、铝及铜铝复合(对流型) | 0.8~3.0 |
灰铸铁 | 0.3~0.45 |
类别 | 关联式 | 适用范围 |
---|---|---|
Qre | 制冷剂热量 | |
Qconv,re-co | 制冷剂与铜管对流换热 | |
单相过热区[ Rere=2300~105 Prre=0.6~105 | ||
单相过冷区[ Rere=2300~105 Prre=0.6~105, | ||
单相过冷/热[ Rere>105, Prre=0.7~160 | ||
两相区[ | ||
Qcond,co-wa | 铜管与水层导热[ | |
Qcond,wa-ap | 水层与壳体导热[ | |
Qrad,ap-bu | 壳体与空气辐射换热[ | |
Qconv, ap-nofi-ai | 不含肋片的壳体与空气对流换热[ | |
Qconv, ap-fi-ai | 含平行组合肋片的壳体与 空气对流换热[ | |
Qconv, ap(fi)-ai | 含有肋片的壳体平板部分与空气的对流换热 | |
Qcond, ap-fi | 壳体与肋片的导热 | |
ΔPm | 动量压降[ | |
ΔPf | 单相流流体摩擦压降[ | |
两相流流体摩擦压降[ |
Table 2 The correlations of the heat transfer and pressure drop in the AHE model
类别 | 关联式 | 适用范围 |
---|---|---|
Qre | 制冷剂热量 | |
Qconv,re-co | 制冷剂与铜管对流换热 | |
单相过热区[ Rere=2300~105 Prre=0.6~105 | ||
单相过冷区[ Rere=2300~105 Prre=0.6~105, | ||
单相过冷/热[ Rere>105, Prre=0.7~160 | ||
两相区[ | ||
Qcond,co-wa | 铜管与水层导热[ | |
Qcond,wa-ap | 水层与壳体导热[ | |
Qrad,ap-bu | 壳体与空气辐射换热[ | |
Qconv, ap-nofi-ai | 不含肋片的壳体与空气对流换热[ | |
Qconv, ap-fi-ai | 含平行组合肋片的壳体与 空气对流换热[ | |
Qconv, ap(fi)-ai | 含有肋片的壳体平板部分与空气的对流换热 | |
Qcond, ap-fi | 壳体与肋片的导热 | |
ΔPm | 动量压降[ | |
ΔPf | 单相流流体摩擦压降[ | |
两相流流体摩擦压降[ |
Parameters | Case 1 | Case 2 | Case 3 |
---|---|---|---|
tre_in/℃ | 52.2 | 57.5 | 66.8 |
Pre_in/kPa | 2609.3 | 2826.3 | 3116.3 |
Gre_total/(kg/h) | 43.9 | 49.6 | 56.7 |
tai | 18.4 | 19.7 | 18.3 |
twall_south | 18.2 | 18.7 | 18.0 |
twall_east | 18.3 | 18.7 | 18.1 |
twall_west | 18.2 | 18.7 | 18.2 |
twall_north | 20.6 | 22.6 | 21.0 |
tceiling | 18.3 | 18.9 | 18.2 |
tfloor | 17.9 | 21.7 | 18.4 |
tAUST | 18.6 | 20.0 | 18.7 |
Table 3 Experimental results of the model
Parameters | Case 1 | Case 2 | Case 3 |
---|---|---|---|
tre_in/℃ | 52.2 | 57.5 | 66.8 |
Pre_in/kPa | 2609.3 | 2826.3 | 3116.3 |
Gre_total/(kg/h) | 43.9 | 49.6 | 56.7 |
tai | 18.4 | 19.7 | 18.3 |
twall_south | 18.2 | 18.7 | 18.0 |
twall_east | 18.3 | 18.7 | 18.1 |
twall_west | 18.2 | 18.7 | 18.2 |
twall_north | 20.6 | 22.6 | 21.0 |
tceiling | 18.3 | 18.9 | 18.2 |
tfloor | 17.9 | 21.7 | 18.4 |
tAUST | 18.6 | 20.0 | 18.7 |
工况组号 | Gre/(kg/h) | Pre-in/kPa | tre-in/℃ | Tai/℃ | tAUST/℃ |
---|---|---|---|---|---|
a1 | 36~40 | 2726.1 | 49 | 18~22 | 16 |
a2 | 41~45 | 3062.8 | 54 | 18~22 | 16 |
a3 | 46~50 | 3431.3 | 59 | 18~22 | 16 |
b1 | 38 | 2662.3~2857.2 | 48~51 | 18~22 | 16 |
b2 | 42 | 2924.5~3133.9 | 52~55 | 18~22 | 16 |
b3 | 47 | 3206.2~3431.3 | 56~59 | 18~22 | 16 |
c1 | 38 | 2726.1 | 47~55 | 18~22 | 16 |
c2 | 42 | 3062.8 | 52~60 | 18~22 | 16 |
c3 | 47 | 3431.3 | 57~65 | 18~22 | 16 |
d1 | 38 | 2726.1 | 49 | 20 | 14~18 |
d2 | 42 | 3062.8 | 54 | 20 | 14~18 |
d3 | 47 | 3431.3 | 59 | 20 | 14~18 |
Table 4 Ranges of operating parameters in numerical cases
工况组号 | Gre/(kg/h) | Pre-in/kPa | tre-in/℃ | Tai/℃ | tAUST/℃ |
---|---|---|---|---|---|
a1 | 36~40 | 2726.1 | 49 | 18~22 | 16 |
a2 | 41~45 | 3062.8 | 54 | 18~22 | 16 |
a3 | 46~50 | 3431.3 | 59 | 18~22 | 16 |
b1 | 38 | 2662.3~2857.2 | 48~51 | 18~22 | 16 |
b2 | 42 | 2924.5~3133.9 | 52~55 | 18~22 | 16 |
b3 | 47 | 3206.2~3431.3 | 56~59 | 18~22 | 16 |
c1 | 38 | 2726.1 | 47~55 | 18~22 | 16 |
c2 | 42 | 3062.8 | 52~60 | 18~22 | 16 |
c3 | 47 | 3431.3 | 57~65 | 18~22 | 16 |
d1 | 38 | 2726.1 | 49 | 20 | 14~18 |
d2 | 42 | 3062.8 | 54 | 20 | 14~18 |
d3 | 47 | 3431.3 | 59 | 20 | 14~18 |
13 | Zeng Z C. Thermodynamics analysis and heat transfer research of direct radiant floor heating system with ASHP[D]. Zhengzhou: Zhengzhou University, 2010. |
14 | 王园园, 张超, 梁年良, 等. 空气源热泵冷剂直热式建筑采暖系统研究现状[J]. 建筑节能, 2015, 43(7): 21-24. |
Wang Y Y, Zhang C, Liang N L, et al. Status of the refrigerant direct-heating system in building with air source heat pump[J]. Building Energy Efficiency, 2015, 43(7): 21-24. | |
15 | Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump[J]. Energy and Buildings, 2018, 158: 812-821. |
16 | Xu C C, Shao S L. Performances investigations on thermal characteristics of a novel direct-condensation convective-radiant heating panel: an experimental and numerical study[J]. Applied Thermal Engineering, 2024, 244: 122705. |
17 | 邵索拉, 张欢, 由世俊, 等. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
Shao S L, Zhang H, You S J, et al. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489. | |
18 | Shao S L, Zhang H, You S J, et al. Experimental investigation of air-source heat pump heating system with a novel thermal storage refrigerant-heated panel[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(1): 011015. |
19 | 路宾, 李忠. 中国采暖散热器技术与标准现状及发展趋势分析[J]. 建筑科学, 2008, 24(8): 4-8. |
Lu B, Li Z. Analysis on status and development trend of heating radiator technology and standards in China[J]. Building Science, 2008, 24(8): 4-8. | |
20 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16: 359-368. |
21 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
1 | International Energy Agency. Energy statistics data browser[R]. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser. |
2 | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
3 | Wang N B, Guo Y H, Yu H X, et al. Investigation on performance enhancement of micro-channel separated heat pipe in data center: a coupled heat-mass-flow characterization approach[J]. Applied Thermal Engineering, 2024, 248: 123327. |
4 | Yan H Z, Hu B, Wang R Z. Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111026. |
5 | 吴迪, 胡斌, 王如竹, 等. 水蒸气准饱和压缩高温热泵循环性能分析[J]. 化工学报, 2023, 74(S1): 45-52. |
Wu D, Hu B, Wang R Z, et al. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system[J]. CIESC Journal, 2023, 74(S1): 45-52. | |
6 | Tanabe S, Kimura K. Importance of air movements on thermal comfort under hot and humid conditions[C]// Proceedings of the Second ASHRAE Far East Conference on Air Conditioning in Hot Climates. Kuala Lumpur: ASHRAE, 1989. |
7 | Wu Y F, Sun H L, Yang Z X, et al. Dynamic process simulation of indoor temperature distribution in radiant-convective heating terminals[J]. Building and Environment, 2023, 244: 110843. |
8 | 陈守海, 高童, 王军, 等. 挂壁式变频空调器温度场特性与热舒适研究[J]. 家电科技, 2018(S1): 147-151. |
Chen S H, Gao T, Wang J, et al. Research on temperature field characteristics and thermal comfort of wall type frequency conversion air conditioner[J]. Journal of Appliance Science & Technology, 2018(S1): 147-151. | |
9 | 黄允棋, 司徒姗姗, 陈小辉. 关于壁挂式空调制热舒适性最优出风温度的实验研究[J]. 环境技术, 2019, 37(3): 64-69. |
Huang Y Q, Situ S S, Chen X H. Experimental study on optimal air temperature for wall-mounted air conditioning heating comfort[J]. Environmental Technology, 2019, 37(3): 64-69. | |
22 | Davies W A, Hrnjak P. Heat transfer and flow regimes during counter-flow steam condensation in flattened-tube air-cooled condensers[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118930. |
23 | John H. A Heat Transfer Textbook[M]. 4th ed. USA: Phlogiston Press, 2018: 141-160, 523-577. |
24 | Tari I, Mehrtash M. Natural convection heat transfer from inclined plate-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 574-593. |
25 | Kraus A D, Aziz A, Welty J. Extended Surface Heat Transfer[M]. USA: Wiley, 2001: 58-92, 170-193. |
26 | Yang Z Q, Gong M Q, Chen G F, et al. Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube[J]. Applied Thermal Engineering, 2017, 120: 654-671. |
27 | Moody L F. Friction factors for pipe flow[J]. Journal of Fluids Engineering, Transactions of the ASME, 1944, 66(8): 671-678. |
28 | Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3246-3261. |
29 | 国家质量监督检验检疫总局, 国家标准化管理委员会. 供暖散热器散热量测定方法: [S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method for measuring the heat dissipation of heating radiators: [S]. Beijing: Standards Press of China, 2018. | |
30 | 住房和城乡建设部. 辐射供冷及供暖装置热性能测试方法: [S]. 北京: 中国标准出版社, 2013. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Test methods for thermal performance of radiant cooling and heating unit: [S]. Beijing: Standards Press of China, 2013. | |
10 | Olesen B W. Comparative experimental study of performance of radiant floor-heating systems and a wall panel heating system under dynamic conditions[J]. ASHRAE Transactions, 1994, 100(1): 1011-1023. |
11 | Xiao B, He L, Zhang S H, et al. Comparison and analysis on air-to-air and air-to-water heat pump heating systems[J]. Renewable Energy, 2020, 146: 1888-1896. |
12 | Zhang H, Jiang L F, Zheng W D, et al. Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system[J]. Building and Environment, 2019, 164: 106341. |
13 | 曾章传. 空气源热泵直接地板辐射采暖能效及地板传热研究[D]. 郑州: 郑州大学, 2010. |
[1] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[2] | Zhenglei HE, Dingding HU. Multi-objective optimization of papermaking wastewater based on multi-agent reinforcement learning [J]. CIESC Journal, 2025, 76(4): 1617-1634. |
[3] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[4] | Xinying LI, Chang SU, Chao GUO, Jian PANG, Chao WANG, Chun LI. Application and optimization of CRISPR editing technology in Streptomyces [J]. CIESC Journal, 2025, 76(3): 922-932. |
[5] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
[6] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[7] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
[8] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[9] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
[10] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[11] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[12] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[13] | Zeyu ZHANG, Ping WANG, Kailun DAI, Weijia QIAN, Subhajit Roy, Ruiyang SHUAI, Antonio Ferrante. Combustion characteristics and NO production of axially staged premixed NH3/CH4 turbulent swirling flames [J]. CIESC Journal, 2025, 76(2): 835-845. |
[14] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
[15] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||