CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4882-4892.DOI: 10.11949/0438-1157.20250164
• Energy and environmental engineering • Previous Articles Next Articles
Lili TONG1(
), Ying CHEN1,2(
), Minhua AI1(
), Yumei SHU1, Xiangwen ZHANG1, Jijun ZOU1, Lun PAN1(
)
Received:2025-02-21
Revised:2025-05-13
Online:2025-10-23
Published:2025-09-25
Contact:
Minhua AI, Lun PAN
佟丽丽1(
), 陈英1,2(
), 艾敏华1(
), 舒玉美1, 张香文1, 邹吉军1, 潘伦1(
)
通讯作者:
艾敏华,潘伦
作者简介:佟丽丽(1983—),女,博士研究生,1060207133@qq.com基金资助:CLC Number:
Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production[J]. CIESC Journal, 2025, 76(9): 4882-4892.
佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 XRD patterns (a) and UV-vis diffuse reflection spectra (b) of ZnO, ZnO/WO3 and WO3; UV-vis absorption spectra of NBD (c) and CHOE (d) before and after the addition of ZnO and ZnO/WO3 heterojunction, respectively
Fig. 3 Phosphorescence (PH) spectra (77 K) (a) and phosphorescence lifetime (b) of CHOE with or without ZnO and ZnO/WO3 heterojunction; (c) The phosphorescence signal intensity of CHOE and CHOE-NBD with the addition of ZnO and ZnO/WO3 heterojunctions at 458 nm; (d) Steady-state photoluminescence (PL) spectra of ZnO/WO3 heterojunction with or without CHOE
Fig. 8 (a) Effect of ZnO and ZnO/WO3 heterojunction on the [2+2] photocycloaddition of CHOE and QC; (b)Effect of SiO2 on the [2+2] photocycloaddition of NBD and CHOE
| Fuel | Catalysts | Density (20℃)/(g/cm3) | NHOC/(MJ/kg) | Viscosity (-20℃)/(mm2/s) | Freezing point/℃ |
|---|---|---|---|---|---|
| QC | — | 0.982 | 44.38 | 1.92 | -44 |
| 1-adduct | — | 0.986 | 41.72 | 41.68 | <-65 |
QC/1-adduct (57%(mass)) | — | 0.985 | 42.58 | 8.25 | <-60 |
QC/1-adduct (60%(mass)) | ZnO | 0.985 | 42.60 | 8.04 | <-60 |
QC/1-adduct (83%(mass)) | ZnO/WO3 (2.5 mg) | 0.984 | 42.89 | 6.16 | <-60 |
QC/1-adduct (120%(mass)) | ZnO/WO3 (5.0 mg) | 0.984 | 43.17 | 5.07 | <-60 |
QC/1-adduct (172%(mass)) | ZnO/WO3 (40.0 mg) | 0.983 | 43.48 | 4.09 | <-60 |
Table 1 Properties of QC, 1-adduct and blending fuels obtained under different catalytic conditions
| Fuel | Catalysts | Density (20℃)/(g/cm3) | NHOC/(MJ/kg) | Viscosity (-20℃)/(mm2/s) | Freezing point/℃ |
|---|---|---|---|---|---|
| QC | — | 0.982 | 44.38 | 1.92 | -44 |
| 1-adduct | — | 0.986 | 41.72 | 41.68 | <-65 |
QC/1-adduct (57%(mass)) | — | 0.985 | 42.58 | 8.25 | <-60 |
QC/1-adduct (60%(mass)) | ZnO | 0.985 | 42.60 | 8.04 | <-60 |
QC/1-adduct (83%(mass)) | ZnO/WO3 (2.5 mg) | 0.984 | 42.89 | 6.16 | <-60 |
QC/1-adduct (120%(mass)) | ZnO/WO3 (5.0 mg) | 0.984 | 43.17 | 5.07 | <-60 |
QC/1-adduct (172%(mass)) | ZnO/WO3 (40.0 mg) | 0.983 | 43.48 | 4.09 | <-60 |
| [1] | Hu Y C, Zhao Y Y, Li N, et al. Sustainable production of high-energy-density jet fuel via cycloaddition reactions[J]. Journal of Energy Chemistry, 2024, 95: 712-722. |
| [2] | 刘宁, 史成香, 潘伦, 等. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报, 2021, 49(12): 1780-1790. |
| Liu N, Shi C X, Pan L, et al. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1780-1790. | |
| [3] | Wang X Y, Jia T H, Pan L, et al. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties[J]. Transactions of Tianjin University, 2021, 27(2): 87-109. |
| [4] | Zhang X W, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125. |
| [5] | 郭建忠, 蒋妮, 程新荣, 等. 空天动力新型高性能燃料发展趋势及建议[J]. 空天技术, 2023(3): 79-87. |
| Guo J Z, Jiang N, Cheng X R, et al. Development trend and suggestion of new high performance fuel for aerospace propulsion[J]. Aerospace Technology, 2023(3): 79-87. | |
| [6] | Poplata S, Tröster A, Zou Y Q, et al. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions[J]. Chemical Reviews, 2016, 116(17): 9748-9815. |
| [7] | Trimble J S, Crawshaw R, Hardy F J, et al. A designed photoenzyme for enantioselective [2+2] cycloadditions[J]. Nature, 2022, 611(7937): 709-714. |
| [8] | Chen Y, Zhang X F, Guo X L, et al. Mechanism and kinetics of self-sensitized photocycloaddition of cyclohexenone and norbornene[J]. AIChE Journal, 2024, 70(5): e18369. |
| [9] | Liu Y, Chen Y, Ma S, et al. Synthesis of advanced fuel with density higher than 1 g/mL by photoinduced [2+2] cycloaddition of norbornene[J]. Fuel, 2022, 318: 123629. |
| [10] | 余锐, 刘显龙, 史成香, 等. 高能碳氢燃料绿色合成技术研究进展[J]. 含能材料, 2022, 30(11): 1167-1176. |
| Yu R, Liu X L, Shi C X, et al. Review on green synthesis of high-energy-density hydrocarbon fuel[J]. Chinese Journal of Energetic Materials, 2022, 30(11): 1167-1176. | |
| [11] | Pan L, Zou J J, Zhang X W, et al. Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2 [J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8526-8531. |
| [12] | Shen C, Shang M J, Zhang H, et al. A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization[J]. AIChE Journal, 2020, 66(2): e16841. |
| [13] | Zou J J, Liu Y, Pan L, et al. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 439-445. |
| [14] | Li R, Ma B C, Huang W, et al. Photocatalytic regioselective and stereoselective [2 + 2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst[J]. ACS Catalysis, 2017, 7(5): 3097-3101. |
| [15] | Zhao J N, Brosmer J L, Tang Q X, et al. Intramolecular crossed [2+2] photocycloaddition through visible light-induced energy transfer[J]. Journal of the American Chemical Society, 2017, 139(29): 9807-9810. |
| [16] | Xie J J, Pan L, Nie G K, et al. Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel[J]. Green Chemistry, 2019, 21(21): 5886-5895. |
| [17] | Xie J J, Zhang X W, Shi C X, et al. Self-photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels[J]. Sustainable Energy & Fuels, 2020, 4(2): 911-920. |
| [18] | Guo L R, Chu R C, Hao X Y, et al. Ag3PO4 enables the generation of long-lived radical cations for visible light-driven [2+2] and [4+2] pericyclic reactions[J]. Nature Communications, 2024, 15: 979. |
| [19] | Jaiswal K, Mahanta M, De M. Nanomaterials in photocatalysed organic transformations: development, prospects and challenges[J]. Chemical Communications, 2023, 59(40): 5987-6003. |
| [20] | Lin Y X, Avvacumova M, Zhao R L, et al. Triplet energy transfer from lead halide perovskite for highly selective photocatalytic 2+2 cycloaddition[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25357-25365. |
| [21] | Turlington M D, Ahmed S, Schanze K S. Radical cation Diels-Alder reaction by photocatalysis at a dye sensitized photoanode[J]. ACS Catalysis, 2024, 14(16): 12512-12517. |
| [22] | Nie G K, Wang H Y, Li Q, et al. Co-conversion of lignocellulosic derivatives to jet fuel blending by an efficient hydrophobic acid resin[J]. Applied Catalysis B: Environmental, 2021, 292: 120181. |
| [23] | Hu J X, Ai M H, Liu X L, et al. [2+2] and [2+1] cycloaddition of myrcene for synthesis of highly strained bio-fuels with high density and high impulse[J]. Energetic Materials Frontiers, 2025, 6(1): 84-94. |
| [24] | Shu Y M, Wang X Y, Jia T H, et al. Acid-catalyzed rearrangement of biomass polycyclic sesquiterpene derivatives to high-performance alkyl-adamantanes[J]. Chemical Engineering Science, 2023, 277: 118851. |
| [25] | Chen Y, Shu Y M, Ai M H, et al. Mechanism of Brønsted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel[J]. Green Energy & Environment, 2025, 10(3): 585-597. |
| [26] | Rudakova M A, Zarezin D P, Shorunov S V, et al. High-energy-density liquid spiro-norbornanes from methylenenorbornane[J]. Energy & Fuels, 2022, 36(19): 11930-11939. |
| [27] | 王磊, 张香文, 邹吉军, 等. 密度大于1的高密度液体碳氢燃料合成及复配研究[J]. 含能材料, 2009, 17(2): 157-160, 201. |
| Wang L, Zhang X W, Zou J J, et al. Synthesis and blending of high-density hydrocarbon fuels with density beyond 1.0 g·cm-3 [J]. Chinese Journal of Energetic Materials, 2009, 17(2):157-160, 201. | |
| [28] | 孔冲亚, 谭芳芳, 王一卓, 等. 生物质多环碳氢高密度航空燃料合成[J]. 化学进展, 2024, 36(3): 448-462. |
| Kong C Y, Tan F F, Wang Y Z, et al. Synthesis of multi-cyclic hydrocarbon high-density aviation fuels from biomass[J]. Progress in Chemistry, 2024, 36(3): 448-462. | |
| [29] | Chen Y, Wang L, Gao R J, et al. Polarization-enhanced direct Z-scheme ZnO-WO3- x nanorod arrays for efficient piezoelectric-photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2019, 259: 118079. |
| [30] | Ai M H, Peng Z H, Li X D, et al. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis[J]. Green Energy & Environment, 2024, 9(9): 1466-1476. |
| [31] | Zhang J, E X T F, Yang B, et al. Synthesis of highly strained cyclobutane fuels via room-temperature-integrated oxidation/[2+2] cycloaddition of lignocellulose-based cyclic ketones and cyclic alcohols[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(49): 17647-17655. |
| [32] | Pan L, Feng R, Peng H, et al. A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel[J]. RSC Advances, 2014, 4(92): 50998-51001. |
| [1] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [2] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [3] | Binyi ZHANG, Shaodong SUN, Qian YAO, Wenhe CAI, Huiyu ZHANG, Chengxin LI. Study on hybrid system of coal-to-methanol coupled solid oxide fuel cell [J]. CIESC Journal, 2025, 76(9): 4658-4669. |
| [4] | Yufeng TANG, Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA. Preparation of carbon based porous adsorbent with ultra high specific surface area and its Kr gas storage performance [J]. CIESC Journal, 2025, 76(7): 3339-3349. |
| [5] | Hao DUAN, Wenchao WANG, Dong LIU, Xiaojun YIN, Erjiang HU, Ke ZENG. Effects of methanol energy substitution ratio on performance of a methanol/diesel dual direct injection engine [J]. CIESC Journal, 2025, 76(7): 3552-3560. |
| [6] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [7] | Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels [J]. CIESC Journal, 2025, 76(7): 3509-3520. |
| [8] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [9] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [10] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [11] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [12] | Xian LIANG, Xiaoyan ZHANG, Yijun WEI, Yunfang ZHENG, Quanhan GAO, Mai XU, Fengwu WANG. Research progress on the durability of polyelectrolyte for alkaline membrane fuel cells [J]. CIESC Journal, 2025, 76(4): 1447-1462. |
| [13] | Weijie ZHANG, Jiawen HE, Yiming ZHANG, Deli LI, Guangya HU, Xiao CAI, Jinhua WANG, Zuohua HUANG. Effects of fuel stratification on flow field and flame structure of multi-stage swirling methane combustion [J]. CIESC Journal, 2025, 76(4): 1754-1764. |
| [14] | Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system [J]. CIESC Journal, 2025, 76(3): 1230-1242. |
| [15] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||