CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5464-5474.DOI: 10.11949/0438-1157.20250215
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yuhui WU1(
), Jialong ZHANG2, Yuanhe HOU2, Zhen LIU1(
)
Received:2025-03-04
Revised:2025-04-15
Online:2025-11-25
Published:2025-10-25
Contact:
Zhen LIU
通讯作者:
刘振
作者简介:吴宇辉(1999—),男,硕士研究生,aa18760235839@163.com
CLC Number:
Yuhui WU, Jialong ZHANG, Yuanhe HOU, Zhen LIU. Study of radical intermediate cleavage on RAFT polymerization of methyl acrylate and methyl methacrylate[J]. CIESC Journal, 2025, 76(10): 5464-5474.
吴宇辉, 张家龙, 侯远赫, 刘振. 中间体自由基断裂对丙烯酸甲酯/甲基丙烯酸甲酯RAFT聚合的影响[J]. 化工学报, 2025, 76(10): 5464-5474.
Add to citation manager EndNote|Ris|BibTeX
| Entry | Monomer | RAFT agent | Conv①/% | Mn,th② | Mn,GPC③ | Ð③ |
|---|---|---|---|---|---|---|
| 1 | MA | CTA1 | 92 | 8171 | 37800 | 1.76 |
| 2 | MA | CTA2 | 98 | 8811 | 9300 | 1.12 |
| 3 | MA | CTA3 | 40 | 3636 | 3400 | 1.12 |
| 4 | MA | CTA4 | 33 | 3086 | 2400 | 1.11 |
| 5 | MMA | CTA1 | 99 | 10134 | 53100 | 2.36 |
| 6 | MMA | CTA2 | 81 | 8455 | 7600 | 1.32 |
| 7 | MMA | CTA3 | 32 | 3425 | 3000 | 1.25 |
| 8 | MMA | CTA4 | 30 | 3250 | 2500 | 1.20 |
Table 1 Comparison of molecular weight for PMA/PMMA regulated by different CTAs
| Entry | Monomer | RAFT agent | Conv①/% | Mn,th② | Mn,GPC③ | Ð③ |
|---|---|---|---|---|---|---|
| 1 | MA | CTA1 | 92 | 8171 | 37800 | 1.76 |
| 2 | MA | CTA2 | 98 | 8811 | 9300 | 1.12 |
| 3 | MA | CTA3 | 40 | 3636 | 3400 | 1.12 |
| 4 | MA | CTA4 | 33 | 3086 | 2400 | 1.11 |
| 5 | MMA | CTA1 | 99 | 10134 | 53100 | 2.36 |
| 6 | MMA | CTA2 | 81 | 8455 | 7600 | 1.32 |
| 7 | MMA | CTA3 | 32 | 3425 | 3000 | 1.25 |
| 8 | MMA | CTA4 | 30 | 3250 | 2500 | 1.20 |
| Entry | Monomer | RAFT agent | ΔG-α①/(kJ·mol-1) | ΔGβ②/(kJ·mol-1) | ΔGpre-equilibrium③/(kJ·mol-1) | φ④ | C⑤ |
|---|---|---|---|---|---|---|---|
| 1 | MA | CTA 1 | 44.9 | 42.0 | 10.8 | 0.7384 | 9.81×10-4 |
| 2 | MA | CTA 2 | 57.6 | 44.6 | -32.4 | 0.9902 | 6.88×10 |
| 3 | MA | CTA 3 | 80.4 | 62.9 | -25.8 | 0.9980 | 4.46×102 |
| 4 | MA | CTA 4 | 82.4 | 62.6 | -30.1 | 0.9991 | 1.38×103 |
| 5 | MMA | CTA 1 | 31.8 | 50.5 | 40.3 | 0.0013 | 5.08×10-3 |
| 6 | MMA | CTA 2 | 46.4 | 61.0 | 2.9 | 0.0117 | 4.49×10 |
| 7 | MMA | CTA 3 | 58.0 | 73.8 | 0.7 | 0.0058 | 2.64×102 |
| 8 | MMA | CTA 4 | 56.1 | 74.1 | 4.8 | 0.0004 | 7.20×102 |
Table 2 Relative Gibbs free energies of species in pre-equilibrium stage of MA and MMA with CTA1—CTA4
| Entry | Monomer | RAFT agent | ΔG-α①/(kJ·mol-1) | ΔGβ②/(kJ·mol-1) | ΔGpre-equilibrium③/(kJ·mol-1) | φ④ | C⑤ |
|---|---|---|---|---|---|---|---|
| 1 | MA | CTA 1 | 44.9 | 42.0 | 10.8 | 0.7384 | 9.81×10-4 |
| 2 | MA | CTA 2 | 57.6 | 44.6 | -32.4 | 0.9902 | 6.88×10 |
| 3 | MA | CTA 3 | 80.4 | 62.9 | -25.8 | 0.9980 | 4.46×102 |
| 4 | MA | CTA 4 | 82.4 | 62.6 | -30.1 | 0.9991 | 1.38×103 |
| 5 | MMA | CTA 1 | 31.8 | 50.5 | 40.3 | 0.0013 | 5.08×10-3 |
| 6 | MMA | CTA 2 | 46.4 | 61.0 | 2.9 | 0.0117 | 4.49×10 |
| 7 | MMA | CTA 3 | 58.0 | 73.8 | 0.7 | 0.0058 | 2.64×102 |
| 8 | MMA | CTA 4 | 56.1 | 74.1 | 4.8 | 0.0004 | 7.20×102 |
Fig.5 Primary orbital interactions in ETS-NOCV analysis(Transition state structure is divided into two fragments: CTA and attacking radical. Blue areas show decreased electron density while red areas show increased electron density)
Fig.7 Orbital interactions of CTAs(CTA is divided into two fragments: Fragment 1 (R group and SC—S unit) and Fragment 2 (Z group). Blue labels indicate orbital serial numbers, and red percentage labels denote contribution of fragment orbitals to corresponding orbitals in complex. Fragment orbitals contributing less than 10% to orbital components of complex are not displayed. Solid bars represent occupied orbitals, while dashed bars represent unoccupied orbitals)
Fig.8 Energy decomposition analysis: (a)—(d) decomposition of relative Gibbs free energy (ΔG) into its contributing components; (e),(f) distortion-interaction analysis for ΔE of TS2′-MA-CTA2 and TS2′-MA-CTA3; (g),(h) MPI variation from CTA to transition state structure
| [1] | Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chemical Reviews, 2001, 101(12): 3661-3688. |
| [2] | Matyjaszewski K, Poli R. Comparison of bond dissociation energies of dormant species relevant to degenerative transfer and atom transfer radical polymerization[J]. Macromolecules, 2005, 38(19): 8093-8100. |
| [3] | 罗英武. 复杂聚合物链结构的可控制备与新材料[J]. 化工学报, 2013, 64(2): 415-426. |
| Luo Y W. Controllable preparation of complex polymer chains and novel materials[J]. CIESC Journal, 2013, 64(2): 415-426. | |
| [4] | Destarac M. Industrial development of reversible-deactivation radical polymerization: is the induction period over?[J]. Polymer Chemistry, 2018, 9(40): 4947-4967. |
| [5] | Anastasaki A, Nikolaou V, Nurumbetov G, et al. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis[J]. Chemical Reviews, 2016, 116(3): 835-877. |
| [6] | Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32(1): 93-146. |
| [7] | Keddie D J, Moad G, Rizzardo E, et al. RAFT agent design and synthesis[J]. Macromolecules, 2012, 45(13): 5321-5342. |
| [8] | Gardiner J, Martinez-Botella I, Kohl T M, et al. 4-halogeno-3,5-dimethyl-1H-pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability[J]. Polymer International, 2017, 66(11): 1438-1447. |
| [9] | Chong Y K, Krstina J, Le T P T, et al. Thiocarbonylthio compounds [SC(ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R)[J]. Macromolecules, 2003, 36(7): 2256-2272. |
| [10] | Nothling M D, Fu Q, Reyhani A, et al. Progress and perspectives beyond traditional RAFT polymerization[J]. Advanced Science, 2020, 7(20): 2001656. |
| [11] | Kerr A, Moriceau G, Przybyla M A, et al. Bis(trithiocarbonate) disulfides: from chain transfer agent precursors to iniferter control agents in RAFT polymerization[J]. Macromolecules, 2021, 54(14): 6649-6661. |
| [12] | Moad G, Mayadunne R T A, Rizzardo E, et al. Synthesis of novel architectures by radical polymerization with reversible addition fragmentation chain transfer (RAFT polymerization)[J]. Macromolecular Symposia, 2003, 192(1): 1-12. |
| [13] | Zhang W J, Hong C Y, Pan C Y. Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery[J]. Biomacromolecules, 2017, 18(4): 1210-1217. |
| [14] | Harrisson S, Liu X, Ollagnier J N, et al. RAFT polymerization of vinyl esters: synthesis and applications[J]. Polymers, 2014, 6(5): 1437-1488. |
| [15] | Liu J N, Duong H, Whittaker M R, et al. Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications[J]. Macromolecular Rapid Communications, 2012, 33(9): 760-766. |
| [16] | 郑晋文, 王晓, 安泽胜. RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡[J]. 高分子学报, 2019, 50(11): 1167-1176. |
| Zheng J W, Wang X, An Z S. Synthesis of oxidation responsive vesicles with different block sequences via RAFT polymerization-induced self-assembly[J]. Acta Polymerica Sinica, 2019, 50(11): 1167-1176. | |
| [17] | 赵小燕, 单国荣. RAFT聚合制备PMPS-b-PNIPAM嵌段共聚物及温敏性纳米粒子[J]. 化工学报, 2019, 70(10): 4080-4088. |
| Zhao X Y, Shan G R. PMPS-b-PNIPAM copolymers synthesized by RAFT polymerization and their thermo-responsive nanoparticles[J]. CIESC Journal, 2019, 70(10): 4080-4088. | |
| [18] | Liu C, Hong C Y, Pan C Y. Polymerization techniques in polymerization-induced self-assembly (PISA)[J]. Polymer Chemistry, 2020, 11(22): 3673-3689. |
| [19] | Sun H, Kabb C P, Sims M B, et al. Architecture-transformable polymers: reshaping the future of stimuli-responsive polymers[J]. Progress in Polymer Science, 2019, 89: 61-75. |
| [20] | Moad G. RAFT polymerization to form stimuli-responsive polymers[J]. Polymer Chemistry, 2017, 8(1): 177-219. |
| [21] | Moad G, Rizzardo E, Thang S H. RAFT polymerization and some of its applications[J]. Chemistry - An Asian Journal, 2013, 8(8): 1634-1644. |
| [22] | York A W, Kirkland S E, McCormick C L. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(9): 1018-1036. |
| [23] | Penfold N J W, Yeow J, Boyer C, et al. Emerging trends in polymerization-induced self-assembly[J]. ACS Macro Letters, 2019, 8(8): 1029-1054. |
| [24] | Patton D L, Advincula R C. A versatile synthetic route to macromonomers via RAFT polymerization[J]. Macromolecules, 2006, 39(25): 8674-8683. |
| [25] | Nwoko T, Nguyen K, Saha N K, et al. Rate retardation trends in RAFT — an emerging monomer classification tool?[J]. Polymer Chemistry, 2024, 15(11): 1052-1061. |
| [26] | Bereś M A, Zhang B, Junkers T, et al. Kinetic investigation of photoiniferter-RAFT polymerization in continuous flow using inline NMR analysis[J]. Polymer Chemistry, 2024, 15(31): 3166-3175. |
| [27] | Zhang Z B, Zhu X L, Zhu J, et al. Thermal polymerization of methyl (meth)acrylate via reversible addition-fragmentation chain transfer (RAFT) process[J]. Polymer, 2006, 47(20): 6970-6977. |
| [28] | Boner S, Parkatzidis K, de Alwis Watuthanthrige N, et al. RAFT polymerization of renewable monomers with dithiobenzoates: effect of Z-group substituents and reaction conditions[J]. European Polymer Journal, 2024, 205: 112721. |
| [29] | Bradford K G E, Petit L M, Whitfield R, et al. Ubiquitous nature of rate retardation in reversible addition-fragmentation chain transfer polymerization[J]. Journal of the American Chemical Society, 2021, 143(42): 17769-17777. |
| [30] | Perrier S. 50th anniversary perspective: RAFT polymerization — a user guide[J]. Macromolecules, 2017, 50(19): 7433-7447. |
| [31] | Corrigan N, Jung K, Moad G, et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications[J]. Progress in Polymer Science, 2020, 111: 101311. |
| [32] | Matioszek D, Mazières S, Brusylovets O, et al. Experimental and theoretical comparison of addition-fragmentation pathways of diseleno- and dithiocarbamate RAFT agents[J]. Macromolecules, 2019, 52(9): 3376-3386. |
| [33] | Moad C L, Moad G, Rizzardo E, et al. Chain transfer activity of ω-unsaturated methyl methacrylate oligomers[J]. Macromolecules, 1996, 29(24): 7717-7726. |
| [34] | Derboven P, van Steenberge P H M, Reyniers M F, et al. Chain transfer in degenerative RAFT polymerization revisited: a comparative study of literature methods[J]. Macromolecular Theory and Simulations, 2016, 25(2): 104-115. |
| [35] | Moad G, Moad C L. Use of chain length distributions in determining chain transfer constants and termination mechanisms[J]. Macromolecules, 1996, 29(24): 7727-7733. |
| [36] | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01 [CP]. Wallingford: Gaussian Inc., CT, 2009. |
| [37] | Becke A D. Density-functional thermochemistry(Ⅲ): The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
| [38] | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. |
| [39] | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
| [40] | Hehre W J, Ditchfield R, Pople J A. Self-consistent molecular orbital methods(Ⅻ): Further extensions of Gaussian: type basis sets for use in molecular orbital studies of organic molecules[J]. The Journal of Chemical Physics, 1972, 56(5): 2257-2261. |
| [41] | Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. |
| [42] | Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241. |
| [43] | Pracht P, Bohle F, Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods[J]. Physical Chemistry Chemical Physics, 2020, 22(14): 7169-7192. |
| [44] | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| [45] | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
| [46] | Mitoraj M P, Michalak A, Ziegler T. A combined charge and energy decomposition scheme for bond analysis[J]. Journal of Chemical Theory and Computation, 2009, 5(4): 962-975. |
| [47] | Xiao M, Lu T. Generalized charge decomposition analysis (GCDA) method[J]. Journal of Advances in Physical Chemistry, 2015, 4(4): 111-124. |
| [48] | Bickelhaupt F M, Houk K N. Das distortion/interaction-activation-strain-modell zur analyse von reaktionsgeschwindigkeiten[J]. Angewandte Chemie, 2017, 129(34): 10204-10221. |
| [49] | Shao Y H, Gan Z T, Epifanovsky E, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package[J]. Molecular Physics, 2015, 113(2): 184-215. |
| [50] | Horn P R, Mao Y Z, Head-Gordon M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals[J]. Physical Chemistry Chemical Physics, 2016, 18(33): 23067-23079. |
| [51] | Liu Z Y, Lu T, Chen Q X. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18] carbon: focusing on molecular adsorption and stacking[J]. Carbon, 2021, 171: 514-523. |
| [1] | Shengmei ZHANG, Ming LI, Ying ZHANG, Xi YI, Yiting YANG, Yali LIU. Effects of emulsifier and reacting temperature on characteristics of phase change microcapsules [J]. CIESC Journal, 2025, 76(S1): 444-452. |
| [2] | Mengjiao WANG, Kaixue HU, Xiangkai MENG, Jinbo JIANG, Xudong PENG. Influence of micro-texture size and areal density on surface of silicon carbide on tribological properties of sliding sealing surfaces [J]. CIESC Journal, 2025, 76(8): 4165-4176. |
| [3] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [4] | Fangping XU, Hui YANG, Jun CHEN, Jianyong ZHU, Rongxiu LU. Soft sensor of rare earth element content with transfer learning and residual attention convolutional neural network [J]. CIESC Journal, 2025, 76(4): 1647-1660. |
| [5] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
| [6] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| [7] | Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation [J]. CIESC Journal, 2025, 76(3): 1253-1263. |
| [8] | Guipei XU, Qian SUN, Jiewen LAI, Yifeng LU, Huifang DI, Hui HUANG, Zhenbing WANG. Research progress on failure mechanism of electrochemical double layer capacitors [J]. CIESC Journal, 2025, 76(3): 951-962. |
| [9] | Wenfeng FU, Zhenlei WANG, Xin WANG. An industrial process performance evaluation method based on unbalanced samples generated by DVAE-WAFFN-GAN [J]. CIESC Journal, 2025, 76(2): 769-786. |
| [10] | Qi ZHANG, Rui ZHANG, Tao ZHENG, Xin CAO, Zhichang LIU, Haiyan LIU, Chunming XU, Rong ZHANG, Xianghai MENG. Revealing CO2 capture by a novel dual-cation protic ionic liquid using molecular simulation [J]. CIESC Journal, 2025, 76(2): 797-811. |
| [11] | Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization [J]. CIESC Journal, 2025, 76(2): 879-887. |
| [12] | Yuanzhe WANG, Zhenyu LIU, Yuxin YAN, Siyu WANG, Lei SHI, Qingya LIU. Chemical reaction issues in the technological upgrading of direct coal liquefaction [J]. CIESC Journal, 2025, 76(10): 5522-5532. |
| [13] | Jiguang DONG, Shaolei XIE, Dong SHI, Lijuan LI, Chenyu ZHAO, Yujie HUANG, Chenglong SHI, Taoshan XU, Dawei CAO. Lithium extraction by n-octyl salicylate extraction system: influence of structural alterations in the synergist on extract performance [J]. CIESC Journal, 2025, 76(10): 5190-5202. |
| [14] | Xuezhong MA, Qingxiang XIE. Research on heat transfer enhancing mechanism and cooling performance of herringbone groove on rotor outer sidewall in high-speed contact mechanical seals [J]. CIESC Journal, 2025, 76(10): 5277-5289. |
| [15] | Yanzi WANG, Jia’nan DAI, Jing MA, Tengyue ZHANG, Zili LIANG. Oxygen vacancy characteristics and photocatalytic performance of rare earth elements (RE: Nd, Sm, Eu, Er, Tm) doped B-TiO₂ [J]. CIESC Journal, 2025, 76(10): 5162-5175. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||