CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3822-3833.DOI: 10.11949/0438-1157.20250052
• Reviews and monographs • Previous Articles Next Articles
Received:2025-01-13
Revised:2025-03-12
Online:2025-09-17
Published:2025-08-25
Contact:
Yan YUAN
通讯作者:
袁艳
作者简介:罗佳欣(2000—),女,硕士研究生,1005328122@qq.com
基金资助:CLC Number:
Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries[J]. CIESC Journal, 2025, 76(8): 3822-3833.
罗佳欣, 袁艳. 压电材料在固态金属二次电池中的研究进展[J]. 化工学报, 2025, 76(8): 3822-3833.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) Schematic illustration of Li+ concentration distribution around the BTO modified LiPON/LNM interface; (b) Comparison of the rate performance between unmodified and BTO-modified Li/LiPON/LNM batteries[29]; (c) In-situ DPCSTEM observations of net-charge-density accumulation at the LCO/LPSCl and BTO-LCO/LPSCl interface with bias voltages of 1.0, 1.6, and 2.2 V. The color bar is defined as the relative magnitude of the positive/negative charge density[30]; (d) Schematic diagram of cell distortion of C(NH2)3ClO4 coating layer, where C(NH2)3ClO4 is stretched along a direction and compressed along b direction (left). The phase-field simulation verifies the dipole orientation in the ferroelectric coating layer and the generation of built-in electric field (middle and right)[33]; (e) Tensile stress distribution for NCM811 and NCM811-LTO particles at the maximum strain state[34]
| 复合电解质 | 介电填料 | 介电常数 | 活化能/eV | 离子电导率/(S·cm-1) | 文献 |
|---|---|---|---|---|---|
| β-PVDF/LiFSI | β-PVDF | 108 | 0.22 | 7.7×10-4 | [ |
| PVDF/LiTFSI | PVDF | 9 | 0.49 | 1.77×10-5 | [ |
| p(VDF-TrFE-CTFE)/LiTFSI | P(VDF-TrFE-CTFE) | 44 | 0.26 | 3.1×10-4 | [ |
| PVDF-Si3N4 | Si3N4 | 16.2 | 0.21 | 5.7×10-4 | [ |
| PVDF/BTO-LLTO | BTO-LLTO | 24 | 0.2 | 8.2×10-4 | [ |
| PVDF/LiFSI/NaNbO3 | NaNbO3 | 20 | — | 5.56×10-4 | [ |
| PVDF/LiFSI/LiTaO3 | LiTaO3 | — | 0.24 | 4.9×10-4 | [ |
| PVDF-HFP/LiFSI/BaTi2O5 | BaTi2O5 | — | 0.078 | 3.4 × 10-4 | [ |
| PVDF/LiTFSI/BiFeO3 | BiFeO3 | — | 0.249 | 1.39× 10-4 | [ |
| PVDF-b-PTFE/LiTFSI/TiO2/BaTiO3 | TiO2/BaTiO3 | — | 0.1997 | 7.82× 10-4 | [ |
| PVDF/LiNbO3 | LiNbO3 | 18 | — | 1.081×10-3 | [ |
| PVDF/LiTFSI/Ga/Nb@LLZO/BTO | Ga/Nb@LLZO/BTO | 102 | 0.16 | 0.74×10-3 | [ |
| PVDF/LiFSI/BTO-MoSe2 | BTO-MoSe2 | — | 0.12 | 6.5 ×10-4 | [ |
Table 1 Research summary on dielectric composite electrolytes based on PVDF and its copolymers
| 复合电解质 | 介电填料 | 介电常数 | 活化能/eV | 离子电导率/(S·cm-1) | 文献 |
|---|---|---|---|---|---|
| β-PVDF/LiFSI | β-PVDF | 108 | 0.22 | 7.7×10-4 | [ |
| PVDF/LiTFSI | PVDF | 9 | 0.49 | 1.77×10-5 | [ |
| p(VDF-TrFE-CTFE)/LiTFSI | P(VDF-TrFE-CTFE) | 44 | 0.26 | 3.1×10-4 | [ |
| PVDF-Si3N4 | Si3N4 | 16.2 | 0.21 | 5.7×10-4 | [ |
| PVDF/BTO-LLTO | BTO-LLTO | 24 | 0.2 | 8.2×10-4 | [ |
| PVDF/LiFSI/NaNbO3 | NaNbO3 | 20 | — | 5.56×10-4 | [ |
| PVDF/LiFSI/LiTaO3 | LiTaO3 | — | 0.24 | 4.9×10-4 | [ |
| PVDF-HFP/LiFSI/BaTi2O5 | BaTi2O5 | — | 0.078 | 3.4 × 10-4 | [ |
| PVDF/LiTFSI/BiFeO3 | BiFeO3 | — | 0.249 | 1.39× 10-4 | [ |
| PVDF-b-PTFE/LiTFSI/TiO2/BaTiO3 | TiO2/BaTiO3 | — | 0.1997 | 7.82× 10-4 | [ |
| PVDF/LiNbO3 | LiNbO3 | 18 | — | 1.081×10-3 | [ |
| PVDF/LiTFSI/Ga/Nb@LLZO/BTO | Ga/Nb@LLZO/BTO | 102 | 0.16 | 0.74×10-3 | [ |
| PVDF/LiFSI/BTO-MoSe2 | BTO-MoSe2 | — | 0.12 | 6.5 ×10-4 | [ |
Fig.3 (a) Schematic diagram of the dissociation of lithium salts by a FE polymer (e.g. PVDF) with a relatively low εr and an RFE polymer [e.g. p(VDF-TrFE)-based terpolymer] with a high εr[35]; (b) Procedures for the fabrication and crystal structure model of BIT NFs[44]
Fig.4 (a) Schematic illustration of Cu, Cu@α-PF and Cu@β-PF after cycles[57]; (b) Schematic diagram of lithium dendrites regulated by the ferroelectric effect of BTO[58]
| [1] | Zhang Y, Phuong P T T, Roake E, et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials[J]. Joule, 2020, 4(2): 301-309. |
| [2] | Qi H, Chen L, Deng S Q, et al. High-entropy ferroelectric materials[J]. Nature Reviews Materials, 2023, 8: 355-356. |
| [3] | Yan M Y, Xiao Z D, Ye J J, et al. Porous ferroelectric materials for energy technologies: current status and future perspectives[J]. Energy & Environmental Science, 2021, 14(12): 6158-6190. |
| [4] | Li N, Xie K Y, Huang H T. Ferroelectric materials for high energy density batteries: progress and outlook[J]. ACS Energy Letters, 2023, 8(10): 4357-4370. |
| [5] | Zhang Y, Sun H J, Chen W. Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity[J]. Journal of Alloys and Compounds, 2017, 694: 745-751. |
| [6] | Fadhlina H, Atiqah A, Zainuddin Z. A review on lithium doped lead-free piezoelectric materials[J]. Materials Today Communications, 2022, 33: 104835. |
| [7] | Kim Y G, Kim H, Lee G J, et al. Flexoelectric-boosted piezoelectricity of BaTiO3@SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters[J]. Nano Energy, 2021, 89: 106469. |
| [8] | Luo H J, Liu H, Huang H B, et al. Achieving giant electrostrain of above 1% in (Bi, Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition[J]. Science Advances, 2023, 9(5): eade7078. |
| [9] | Wang X Z, Wang N, Liao J Y, et al. Lead-free (K, Na)NbO3 piezocatalyst with superior piezocatalysis and large-scale production[J]. Advanced Functional Materials, 2024, 34(14): 2313662. |
| [10] | Zhang M H, Zhang Q H, Yu T T, et al. Enhanced electric-field-induced strains in (K, Na)NbO3 piezoelectrics from heterogeneous structures[J]. Materials Today, 2021, 46: 44-53. |
| [11] | Suresh S, Nabiyeva T, Biniek L, et al. Poly(vinylidene fluoride) aerogels with α, β and γ crystalline forms: correlating physicochemical properties with polymorphic structures[J]. ACS Polymers Au, 2024, 4(2): 128-139. |
| [12] | Hwang C, Song W J, Song G, et al. A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29235-29241. |
| [13] | Peng S M, Yang X, Yang Y, et al. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites[J]. Advanced Materials, 2019, 31(21): 1807722. |
| [14] | Chen X, Qin X, Qian X, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. |
| [15] | Liang H Q, Wu Q Y, Wan L S, et al. Thermally induced phase separation followed by in situ sol-gel process: a novel method for PVDF/SiO2 hybrid membranes[J]. Journal of Membrane Science, 2014, 465: 56-67. |
| [16] | Alam M M, Sultana A, Sarkar D, et al. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor[J]. Nanotechnology, 2017, 28(36): 365401. |
| [17] | Jian G, Jiao Y, Meng Q Z, et al. Hydrothermal synthesis of BaTiO3 nanowires for high energy density nanocomposite capacitors[J]. Journal of Materials Science, 2020, 55(16): 6903-6914. |
| [18] | Gao G D, Zhang Q Y, Vecitis C D. CNT-PVDF composite flow-through electrode for single-pass sequential reduction-oxidation[J]. Journal of Materials Chemistry A, 2014, 2(17): 6185-6190. |
| [19] | Katzir S. The discovery of the piezoelectric effect[J]. Archive for History of Exact Sciences, 2003, 57(1): 61-91. |
| [20] | 李佳斌. 新型压电铁电材料电子性质[M]. 北京: 化学工业出版社, 2024. |
| Li J B. Electronic Property of Novel Piezoelectric Ferroelectric Materials[M]. Beijing: Chemical Industry Press, 2024. | |
| [21] | 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009. |
| Wang C L, Li J C, Zhao M L. Piezoelectric Ferroelectric Physics[M]. Beijing: Science Press, 2009. | |
| [22] | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278-1291. |
| [23] | Zou Z Y, Li Y J, Lu Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221. |
| [24] | Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society, 1973, 120(10): 1289. |
| [25] | Guo X X, Matei I, Jamnik J, et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2/BaF2 multilayer heterostructures[J]. Physical Review B, 2007, 76(12): 125429. |
| [26] | Gu Z Q, Ma J L, Zhu F, et al. Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14: 1632 . |
| [27] | Wang Y, Lv Y, Su Y B, et al. 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries[J]. Nano Energy, 2021, 90: 106589. |
| [28] | Khan M A, Nadeem M A, Idriss H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: a review[J]. Surface Science Reports, 2016, 71(1): 1-31. |
| [29] | Yada C, Ohmori A, Ide K, et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries[J]. Advanced Energy Materials, 2014, 4(9): 1301416. |
| [30] | Wang L L, Xie R C, Chen B B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): 5889. |
| [31] | Jin F, Xue X Y, Zhao Y, et al. Enhanced rate capability and high-voltage cycling stability of single-crystal nickel-rich cathode by surface anchoring dielectric BaTiO3 [J]. Journal of Colloid and Interface Science, 2022, 619: 65-74. |
| [32] | Park B K, Kim H, Kim K S, et al. Interface design considering intrinsic properties of dielectric materials to minimize space-charge layer effect between oxide cathode and sulfide solid electrolyte in all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(37): 2201208. |
| [33] | Li W R, Zhang S, Zheng W J, et al. Self-polarized organic-inorganic hybrid ferroelectric cathode coatings assisted high performance all-solid-state lithium battery[J]. Advanced Functional Materials, 2023, 33(27): 2300791. |
| [34] | Dai Z S, Wang J H, Zhao H L, et al. Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries[J]. Advanced Science, 2022, 9(18): 2200622. |
| [35] | Huang Y F, Gu T, Rui G C, et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity[J]. Energy & Environmental Science, 2021, 14(11): 6021-6029. |
| [36] | Xu C W, Zhang L, Xu Y L, et al. Filling the holes in piezopolymers with a solid electrolyte: a new paradigm of poling-free dynamic electrets for energy harvesting[J]. Journal of Materials Chemistry A, 2017, 5(1): 189-200. |
| [37] | Sultana A, Alam M M, Fabiano S, et al. Enhanced ionic transport in ferroelectric polymer fiber mats[J]. Journal of Materials Chemistry A, 2021, 9(39): 22418-22427. |
| [38] | Kang Q, Li Y, Zhuang Z C, et al. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 69: 194-204. |
| [39] | Yuan Y, Chen L K, Li Y H, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004. |
| [40] | Wu Y M, Zhang H, Xu Y L, et al. Ferroelectric BiFeO3 modified PVDF-based electrolytes for high-performance lithium metal batteries[J]. Journal of Materials Chemistry A, 2024, 12(31): 20403-20413. |
| [41] | Ren Z T, Gu S C, Li T, et al. A composite dielectric membrane with low dielectric loss for dendrite-free lithium deposition in lithium metal batteries[J]. Journal of Materials Chemistry A, 2024, 12(47): 32885-32894. |
| [42] | Ge S H, Wu J W, Wang R, et al. Tailoring practical solid electrolyte composites containing ferroelectric ceramic nanofibers and all-trans block copolymers for all-solid-state lithium metal batteries[J]. ACS Nano, 2024, 18(21): 13818-13828. |
| [43] | Shi P R, Ma J B, Liu M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
| [44] | Kang J B, Yan Z R, Gao L, et al. Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers[J]. Energy Storage Materials, 2022, 53: 192-203. |
| [45] | Arya A, Saykar N G, Sharma A L. Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices[J]. Journal of Applied Polymer Science, 2019, 136(16): 47361. |
| [46] | Yu H, Han J S, Hwang G C, et al. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries[J]. Electrochimica Acta, 2021, 365: 137349. |
| [47] | Arjunan P, Kouthaman M, Subadevi R, et al. Superior ionic transferring polymer with silicon dioxide composite membrane via phase inversion method designed for high performance sodium-ion battery[J]. Polymers, 2020, 12(2): 405. |
| [48] | Shanmukaraj D, Wang G X, Liu H K, et al. Synthesis and characterization of SrBi4Ti4O15 ferroelectricfiller based composite polymer electrolytes for lithium ion batteries[J]. Polymer Bulletin, 2008, 60(2): 351-361. |
| [49] | Kumar A, Madaan M, Arya A, et al. Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(13): 10873-10888. |
| [50] | Cheng H, Li D G, Xu B, et al. Amorphous silicon nitride induced high dielectric constant toward long-life solid lithium metal battery[J]. Energy Storage Materials, 2022, 53: 305-314. |
| [51] | An X F, Liu Y, Yang K, et al. Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity[J]. Advanced Materials, 2024, 36(13): 2311195. |
| [52] | Li Z H, Wang X J, Lin X Y, et al. Ferroelectric nanorods as a polymer interface additive for high-performance garnet-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35684-35691. |
| [53] | Zhao J, Huang S F, Zhao Y Y, et al. Ultra-stable solid-state lithium metal batteries with ferroelectric oxide-enhanced PVDF-based hybrid solid electrolytes[J]. Journal of Materials Chemistry A, 2025, 13: 9347-9356. |
| [54] | Shan J Y, Gu R, Xu J T, et al. Heterojunction ferroelectric materials enhance ion transport and fast charging of polymer solid electrolytes for lithium metal batteries[J]. Advanced Energy Materials, 2025, 15(18): 2405220. |
| [55] | Wang S H, Yin Y X, Zuo T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. |
| [56] | Nishikawa K, Mori T, Nishida T, et al. In situ observation of dendrite growth of electrodeposited Li metal[J]. Journal of the Electrochemical Society, 2010, 157(11): A1212. |
| [57] | Xiang J W, Cheng Z X, Zhao Y, et al. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode[J]. Advanced Science, 2019, 6(22): 1901120. |
| [58] | Guo Y P, Wang R Y, Cui C, et al. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect[J]. Nano Letters, 2020, 20(10): 7680-7687. |
| [59] | Xia S H, Zhao Y, Yan J H, et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films[J]. ACS Nano, 2021, 15(2): 3161-3170. |
| [60] | Xu D B, Zhang P C, Wang W R, et al. Ferroelectric dipoles tailoring solid-electrolyte-interphase chemistry to enable reversible lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416565. |
| [61] | He Y T, Zhang Y H, Sari H M K, et al. New insight into Li metal protection: regulating the Li-ion flux via dielectric polarization[J]. Nano Energy, 2021, 89: 106334. |
| [62] | Dubey B P, Vinodhkumar A, Sahoo A, et al. Microstructural tuning of solid electrolyte Na3Zr2Si2PO12 by polymer-assisted solution synthesis method and its effect on ionic conductivity and dielectric properties[J]. ACS Applied Energy Materials, 2021, 4(6): 5475-5485. |
| [63] | Sun Z, Zhao Y J, Ni Q, et al. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface[J]. Small, 2022, 18(16): 2200716. |
| [64] | Wang Y M, Wang Z T, Zheng F, et al. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery[J]. Advanced Science, 2022, 9(13): 2105849. |
| [65] | Ni Q, Ding Y, Wang C Z, et al. Piezoelectric interlayer enabling a rechargeable quasisolid-state sodium battery at 0℃[J]. Advanced Materials, 2024, 36(14): 2309298. |
| [66] | Sun C, Li Y, Sun Z, et al. Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries[J]. Materials Today, 2024, 80: 395-405. |
| [67] | Wu K, Yi J, Liu X Y, et al. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode[J]. Nano-Micro Letters, 2021, 13(1): 79. |
| [68] | Wang Y Z, Guo T C, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers[J]. Advanced Materials, 2022, 34(4): 2106937. |
| [69] | Zou P C, Zhang R, Yao L B, et al. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration[J]. Advanced Energy Materials, 2021, 11(31): 2100982. |
| [70] | Hu X Q, Narayan B, Naresh N, et al. Ferroelectric interfaces for dendrite prevention in zinc-ion batteries[J]. Small, 2024, 20(49): 2403555. |
| [1] | Yutao WANG, Jianying GONG, Xiangyu LI, Xin WU, Xiufang LIU. Study on directionally propelled droplet based on the piezoelectric-acoustic streaming effect [J]. CIESC Journal, 2025, 76(S1): 181-186. |
| [2] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [3] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [4] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [5] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [6] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [7] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [8] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [9] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| [10] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [11] | Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material [J]. CIESC Journal, 2025, 76(4): 1831-1840. |
| [12] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
| [13] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
| [14] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
| [15] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
