[1] |
Romano M C. Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas [J]. Chemical Engineering Science, 2012, 69 (1): 257-269
|
[2] |
Wang J, Manovic V, Wu Y, Anthony E J. A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes [J]. Applied Energy, 2010, 87 (4): 1453-1458
|
[3] |
Qiao Chunzhen (乔春珍), Wang Baoli (王宝利), Xiao Yunhan (肖云汉). Activity decline of Ca-based CO2 absorbent in repetitive calcination-carbonation [J]. CIESC Journal (化工学报), 2010, 61 (3): 720-724
|
[4] |
Chen Hongwei (陈鸿伟), Zhao Zhenghui (赵争辉). Sequential SO2/CO2 capture using CaO-based sorbents reactivated by steam [J]. CIESC Journal (化工学报), 2012, 63 (8): 2566-2575
|
[5] |
Anthony E J. Ca looping technology: current status, developments and future directions [J]. Greenhouse Gas Sci Technol., 2011, 1 (1): 36-47
|
[6] |
Liu Wenqiang, Low N W, Feng B, et al. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture [J]. Environ. Sci. Technol., 2010, 44: 841-847
|
[7] |
Lu Hong, Khan Ataullah. Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors [J]. Industrial & Engineering Chemistry, 2008, 47: 6216-6220
|
[8] |
Lu Hong, Khan Ataullah. Flame-made durable doped-CaO nanosorbents for CO2 capture [J]. Energy & Fuels, 2009, 23: 1093-1100
|
[9] |
Chen Huichao (陈惠超), Zhao Changsui (赵长遂), Shen Peng (沈鹏). Effect of stream in flue gas on CO2 capture for calcium based sorbent [J]. CIESC Journal (化工学报), 2013, 64 (4): 1364-1372
|
[10] |
Zhang Mingming (张明明), Peng Yunxiang (彭云湘). Preparation of ternary composite Ca-based material CaO-Ca3Al2O6-MgO for high-temperature CO2 capture [J]. CIESC Journal (化工学报), 2014, 65 (1): 227-236
|
[11] |
Lu Hong, Smirniotis P G. Calcium oxide doped sorbents for CO2 uptake in the presence of SO2 at high temperatures [J]. Industrial & Engineering Chemistry Research, 2009, 48: 5454-5459
|
[12] |
Reddy E P, Smirniotis P G. High-temperature sorbents for CO2 made of alkali metals doped on CaO supports [J]. Journal of Physical Chemistry B, 2004, 108 (23): 7794-7800
|
[13] |
Bhatia S K, Perlmutter D D. Effect of the product layer on the kinetics of the CO2-limereaction [J]. AIChE Journal, 1983, 29 (1): 79-86
|
[14] |
Dudek Magdalena. Electrical properties of stoichiometric and non-stoichiometric calcium zirconate [J]. Solid State Ionics, 2003, 157: 183-187
|
[15] |
Guo Mingnü (郭名女). Cyclic reaction characteristic of co-capture CO2/SO2 and kinetic study for synthesized anti-sintering calcium-based sorbents[D]. Chongqing: Chongqing University, 2011
|
[16] |
Manovic V, Anthony E J, Grasa G, Abanades J C. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping [J]. Energy Fuel, 2008, 22 (5): 3258-3264
|
[17] |
Wu S F, Lan L Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst [J]. AIChE Journal, 2012, 58 (5): 1570-1577
|
[18] |
Kwang Bok Yi, Chang Hyun Ko, Jong-Ho Park. Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material [J]. Catalysis Today, 2009, 146: 241-247
|
[19] |
Judd M D, Pope M I. Formation and surface electron-emission properties of coatings [J]. J. Appl. Chem., 1970, 20: 384-388
|
[20] |
Broda Marcin, Müller Christoph R. Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents [J]. Fuel, 2014, 127: 94-100
|