CIESC Journal ›› 2015, Vol. 66 ›› Issue (4): 1243-1251.DOI: 10.11949/j.issn.0438-1157.20141332
Previous Articles Next Articles
WANG Le, NI Zifu, HUI Ming, WANG Jinshui
Received:
2014-09-01
Revised:
2014-12-13
Online:
2015-04-05
Published:
2015-04-05
Supported by:
supported by the National Natural Science Foundation of China (21306040), the Natural Science Foundation of Science and Technology Agency Henan Province(142102210412), the (Effective Utilization of Chemical Resources) State Key Laboratory Project (CRE-2014-C-301), the Basic Scientific Research Special Funds of Provincial Colleges and Universities (2014YWQQ17) and Henan University of Technology Fund Projects (2014CX12C06).
王乐, 倪子富, 惠明, 王金水
通讯作者:
王金水
作者简介:
王乐(1984-),博士研究生,讲师。
基金资助:
国家自然科学基金项目(21306040);河南省科技厅自然科学项目(142102210412);(化工资源有效利用)国家重点实验室项目(CRE-2014-C-301);省属高校基本科研业务费专项资金(2014YWQQ17);河南工业大学校基金项目(2014CX12C06)。
CLC Number:
WANG Le, NI Zifu, HUI Ming, WANG Jinshui. Research advances in metabolic control of succinic acid fermentation[J]. CIESC Journal, 2015, 66(4): 1243-1251.
王乐, 倪子富, 惠明, 王金水. 代谢控制发酵产琥珀酸研究进展[J]. 化工学报, 2015, 66(4): 1243-1251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20141332
[1] | Millard C S, Chao P, LiaoJ J, Donnelly M. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase inEscherichia coli [J]. Appl.Microbiol.Biotechnol., 1996, 62 (5): 1808-1810 |
[2] | Jiang Min (姜岷), Ma Jiangfeng (马江锋), Chen Kequan (陈可泉), Wang Yina (王益娜), Yu Li (于丽). The progress of recombinant Escherichia coli for production of succinic acid [J] Microbiology China (微生物学通报), 2009, 36 (1): 120-124 |
[3] | Song H, Lee S Y. Production of succinic acid by bacterial fermentation [J].Enzyme and Microbial Technology, 2006, 39: 352-361 |
[4] | Beauprez J J, Mey M D, Soetaert W K. Microbial succinic acid production: natural versus metabolic engineered producers [J]. Process Biochemistry, 2010, 45 (7): 1103-1114 |
[5] | Yu Li (于丽), Jiang Min (姜岷), Ma Jiangfeng (马江锋), Yue Fangfang (岳方方), Liu Shuwen (刘树文). Effect of overexpression of Bacillus subtilis phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli [J]. Microbiology China (微生物学通报), 2010, 37 (3): 325-330 |
[6] | Song H, Huh Y S, Leea S Y, Hong W H, Hong Y K. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain [J]. Journal of Biotechnology, 2007, 132 (4): 445-452 |
[7] | Yukihiko A, Tomoko K, Makoto S, Haruhiro M, Keiichiro E, Ritsuko K, Mitsuo O. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 1999, 87 (1): 28-36 |
[8] | Lemire B D, Oyedotun K S. The Saccharomyces cerevisiae mitochondrial succinate: ubiquinone oxidoreductase [J]. Biochimica et Biophysica Acta, 2002, 155 (3): 102-116 |
[9] | Liang Liya (梁丽亚), Ma Jiangfeng (马江锋), Liu Rongming (刘嵘明), Wang Guangming (王光明), Xu Bing (徐冰), Zhang Min (张敏), Jiang Min (姜岷). Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111 [J]. Chin.J.Biotech. (生物工程学报), 2011, 27 (7): 1005-1012 |
[10] | Wang Guilan (王桂兰), Wang Yina (王益娜), Ma Jiangfeng (马江锋), Chen Kequan (陈可泉), Jiang Min (姜岷). Effects of different reduced carbon sources on succinic acid production by anaerobic fermentation of recombinantEscherichia coli [J]. China Brewing (中国酿造), 2009, 204 (3):16-19 |
[11] | Wu Minmin (武敏敏), Liu Hongjuan (刘宏娟), Zhang Jian'an (张建安), Xue Jianwei (薛建伟), Li Jinping (李晋平). Research advances in microbiol fermentation of succinic acid and its prospect [J]. Modern Chemical Industry (现代化工), 2008, 28 (11): 33-37 |
[12] | Liu Rongming (刘嵘明), Liang Liya (梁丽亚), Wu Mingke (吴明科), Jiang Min (姜岷). Progress in microbial production of succinic acid [J]. Chin.J.Biotech. (生物工程学报), 2013, 29 (10): 1386-1397 |
[13] | Hong S H, Lee S Y. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli [J]. Appl.Microbiol.Biotechnol., 2002, 58 (3): 286-290 |
[14] | Xi Yonglan (奚永兰), Chen Kequan (陈可泉), Li Jian (李建), Ma Jiangfeng (马江锋), Sui Shanshan (隋姗姗), Ye Guizi (叶贵子), Jiang Min (姜岷). Progress of CO2 fixation in succinic acid fermentation process [J]. Chemical Industry and Engineering Progress (化工进展), 2010, 29 (7): 1314-1319 |
[15] | Wang D, Lia Q, Yang M, Zhang Y J, Su Z G, Xing J M. Efficient production of succinic acid from corn stalk hydrolysates by a recombinantEscherichia coli with ptsG mutation [J]. Process Biochemistry, 2011, 46 (1): 365-371 |
[16] | Cao Jianlei (曹剑磊), Zhou Li (周丽), Zhang Liang (张梁), Wang Zhengxiang (王正祥), Shi Guiyang (石贵阳). Construction and fermentation of succinate-producing recombinant Escherichia coli [J]. China J.Appl.Environ.Biol. (应用与环境生物学报), 2010, 16 (6): 851-857 |
[17] | Kwon, Deok Y, Lee S Y. Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation inEscherichia coli under high bicarbonate condition [J]. Journal of Microbiology and Biotechnology, 2006, 16 (9): 1448-1452 |
[18] | Tan Z G, Zhu X N, Chen J, Li Q Y, Zhang X L. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production [J]. Applied and Environmental Microbiology, 2013, 79 (16): 4838-4844 |
[19] | Ma Jiangfeng (马江锋), Liang Liya (梁丽亚), Liu Rongming (刘嵘明), Zhang Min (张敏), Chen Kequan (陈可泉), Jiang Min (姜岷), Wei Ping (韦萍). Effects of fermentation regulation and molecular modification on succinate production by E.coli based key enzyme expression [J]. Journal of Nanjing University of Technology: Natural Science Edition (南京工业大学学报:自然科学版), 2011, 33 (3): 58-61 |
[20] | Hong S H, Lee S Y. Enhanced production of succinic acid by metabolically engineered Escherichia coli with amplified activities of malic enzyme and fumarase [J]. Biotechnology and Bioprocess Engineering, 2004, 9 (4): 252-255 |
[21] | Zhang Yuxiu (张玉秀), Wang Jiao (王娇), Wang Dan (王丹), Qi Feng (齐峰). The progress of E.coli in genetic engineering for succinic acid production [J]. China Biotechnology (中国生物工程杂志), 2009, 29 (7): 108-117 |
[22] | Wang L, Wu D P, Tang P W H, Fan X G, Yuan Q P. Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis [J].Carbohydrate Polymers, 2012, 90 (2): 1106-1113 |
[23] | Zhao Jinfang (赵锦芳), Hua Bowen (华渤文), Wang Yongze (王永泽), Zhao Xiao (赵筱), Wang Jinhua (王金华). The construction of high yield succinic acid recombinantE.coli and anaerobic fermentation [J]. The Food and Fermentation Industry (食品与发酵工业), 2013, 39 (1): 6-10 |
[24] | Tang Xuwei (唐绪位), Li Yunjie (李运杰), Li Zhimin (李志敏), Ye Qin (叶勤). Xylose fermentation for succinic acid production byEscherichia coli [J]. Biotechnology (生物技术), 2014, 24 (2): 84-87 |
[25] | Yu Li (于丽), Ma Jiangfeng (马江锋), Yue Fangfang (岳方方), Liu Shuwen (刘树文), Jiang Min (姜岷). Succinic acid production of recombinant E.coli fermentation performance study [J]. China Biotechnology (中国生物工程杂志), 2010, 30 (9): 43-48 |
[26] | Huang Zhihua (黄志华), Liu Ming (刘铭), Wang Baoguang (王宝光), Zhang Yanping (张延平), Cao Zhu'an (曹竹安). The progress of hydrogenlyase for NADH regeneration [J].The Chinese Journal of Process Engineering (过程工程学报), 2006, 6 (6): 1011-1016 |
[27] | Wang Chen (汪晨), Cai Heng (蔡恒), Zhang Hengli (张恒丽), Zhang Kai (张凯), Ouyang Pingkai (欧阳平凯). Screening of strain exposed under plasma discharge for improving succinic acid production [J]. Journal of Nanjing University of Technology: Natural Science Edition (南京工业大学学报:自然科学版), 2013, 25 (1): 57-60 |
[28] | Liu Xuesheng (刘学胜), Jia Quandong (贾全栋), Zhang Weiguo (张伟国). Construction a metabolic engineering strain to produce succinic acid fromCorynebacterium glutamicum by gene deletion mutation [J].Microbiology China (微生物学通报), 2013, 40 (5): 739-748 |
[29] | Chong S K, Mohamadn M S, Mohamed Salleh A H,Choon Y W, Chong C K, Deris S. A hybrid of ant colony optimization and minimization of metabolic adjustment to improve the production of succinic acid inEscherichia coli [J].Computers in Biology and Medicine, 2014, 49: 74-82 |
[30] | Lee S J, Lee D Y, Kim T Y, Kim B H, Lee J, Lee S Y. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation [J]. Appl.Microbiol.Biotechnol., 2005,72 (12): 7880-7887 |
[31] | Zheng Pu (郑璞), Zhou Wei (周威), Ni Ye (倪晔), Jiang Min (姜岷), Wei Ping (韦萍), Sun Zhihao (孙志浩). Environmental factors affecting the succinic acid production by Actinobacillus succinogenes CGMCC 1593 [J]. Chin.J.Biotech. (生物工程学报), 2008, 24 (6): 1051-1055 |
[32] | Gou Dongmei (苟冬梅), Liang Liya (梁丽亚), Liu Rongming (刘嵘明), Zhang Changqing (张常青), Wu Mingke (吴明科), Ma Jiangfeng (马江锋), Chen Kequan (陈可泉), Zhu Jianguo (朱建国), Jiang Min (姜岷). Effect of overexpression of nicotinic acid mononucleotide adenylyltransferase on succinic acid production in Escherichia coli NZN111 [J]. Chin.J.Biotech. (生物工程学报), 2012, 28 (9): 1059-1069 |
[33] | Stols L, Kulkarni G, Harris B, Donnelly M. Expression of ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose [J]. Applied Biochemistry and Biotechnology, 1997, 63-65: 153-158 |
[34] | Liu Rongming (刘嵘明), Ma Jiangfeng (马江锋), Liang Liya (梁丽亚), Xu Bing (徐冰), Wang Guangming (王光明), Zhang Min (张敏), Jiang Min (姜岷). Effect of overexpression of nicotinic acid phosphoribosyl transferase on succinic acid production in Escherichia coli NZN111 [J]. Chin.J.Biotech. (生物工程学报), 2011, 27 (10): 1438-1447 |
[35] | Wu H, Li Z M, Zhou L, Ye Q. Improved succinic acid production in the anaerobic culture of anEscherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture [J]. Chin.J.Biotech., 2007, 73 (24):7837-7843 |
[36] | Wang L, Yang M, Fan X G, Zhu X T, Xu T, Yuan Q P. An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis [J]. Process Biochemistry, 2011, 46 (8): 1619-1626 |
[37] | Li J, Jiang M, Chen K Q, Ye Q, Shang L A, Wei P, Ying H J, Chang H N. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes [J]. Biopro.Biosyst.Eng., 2010, 33 (8): 911-920 |
[38] | Zhou Wei (周威), Zheng Pu (郑璞), Ni Ye (倪晔), Jiang Min (姜岷), Wei Ping (韦萍), Sun Zhihao (孙志浩). Effects of culture redox potential on succinic acid production by Actinobacillus succinogenes in anaerob is fermentation [J]. Chinese Journal of Bioprocess Engineering (生物加工过程), 2008, 6 (6): 12-18 |
[39] | Wang Yina (王益娜), Ma Jiangfeng (马江锋), Chen Kequan (陈可泉), Zuo Peng (左鹏), Wu Xiaohua (吴晓花), Jiang Min (姜岷). Carbon source of recombinant E.coli two-phase fermentation to produce succinic acid [J]. China Biotechnology (中国生物工程杂志), 2009, 29 (3): 57-62 |
[40] | Wang L, Tang P W H, Fan X G, Yuan Q P. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis [J].Biotechnol.Prog., 2013, 29 (5): 1181-1189 |
[41] | Huang Xiumei (黄秀梅), Jiang Min (姜岷), Li Jian (李建), Zheng Xiaoyu (郑晓宇), Yang Zhuona (杨卓娜), Fang Xiaojiang (方晓江), Ye Guizi (叶贵子). Effect of adding intermediate metabolites on succinate production by Actinobacillus succinogenes [J]. Chin.J.Biotech. (生物工程学报), 2010, 26 (9): 1249-1256 |
[42] | Wang L, Fan X G, Tang P W H, Yuan Q P. Xylitol fermentation using hemicellulose hydrolysate prepared by acid pre-impregnated steam explosion of corncob [J]. J.Chem.Technol.Biotechnol., 2013, 88 (11): 2067-2074 |
[43] | Wang Qingzhao (王庆昭). Metabolic engineering of Escherichia coli for improved succinic acid production[D]. Tianjian University (天津大学), 2006: 1-138 |
[44] | Heuser F, Schroer K, Ltüz S. Enhancement of the NAD (P) (H) pool in Escherichia coli for biotransformation [J]. Eng.Life Sci., 2007, 7 (4): 343-353 |
[45] | Lin H, San K Y, Bennett G. Effect of sorghum vulgare phosphoenolpyruvate carboxylase and lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli [J].Appl.Microbiol.Biotechnol., 2005, 67 (4): 515-523 |
[46] | Zou W, Zhu L W, Li H M, Tang Y J. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618 [J].Microbial Cell Factories, 2011, 87: 1-10 |
[47] | Chen Kequan (陈可泉), Jiang Min (姜岷), Wei Ping (韦萍), Su Li (苏溧), Wu Hao (吴昊). Kinetic models for anaerobic fermentation of butanedioic acid [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59 (11): 2819-2823 |
[48] | Lee P C, Lee S Y, Hong S H, Chang H N. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succinici produces MBEL55E from bovine rumen [J]. Appl.Microbiol.Biotechnol., 2002, 58 (5): 663-668 |
[49] | Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain [J]. Appl.Microbiol.Biotechnol.,2008, 81 (3): 459-464 |
[50] | Wang W, Li Z M, Xie J L, Ye Q. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase [J]. Bioprocess Biosyst.Eng., 2009, 32 (6): 737-745 |
[51] | Chen Kequan (陈可泉), Jiang Min (姜岷), Su Li (苏溧), Wei Ping (韦萍). CO2 fixation by Actinobacillus succinogenes in succinic acid production [J]. Chemical Engineering (化学工程), 2009, 37 (1): 49-52 |
[52] | Zhu L W, Wang C C, Liu R S, Li H M, Wan D J, Tang Y J. Actinobacillu ssuccinogenes ATCC 55618 fermentation medium optimization for the production of succinic acid by response surface methodology [J].Biomed Research International, 2012, doi:10.1155/2012/626137 |
[53] | Liu Y P, Zheng P, Sun Z H, Ni Y, Dong J J, Zhu L L. Economical succinic acid production from cane molasses by Actinobacillus succinogenes [J]. Bioresource Technology, 2008, 99 (6): 1736-1742 |
[54] | Yang Zhuona (杨卓娜), Jiang Min (姜岷), Li Jian (李建), Fang Xiaojiang (方晓江), Ye Guizi (叶贵子), Bai Xuefei (白雪飞), Zheng Xiaoyu (郑晓宇), Wei Ping (韦萍). Effects of different neutralizing agents on succinate production byActinobacillus succinogenes NJ113 [J]. Chin.J.Biotech. (生物工程学报), 2010, 26 (11): 1500-1506 |
[55] | Wang L, Wu D P, Tang P W H, Yuan Q P. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation byCandida tropicalis [J].Bioprocess Biosyst.Eng., 2013, 36 (8): 1053-1061 |
[56] | Wang C C, Zhu L W, Li H M, TangY J. Performance analyses of a neutralizing agent combination strategy for the production of succinic acid by Actinobacillus succinogenes ATCC 55618 [J]. Bioprocess Biosyst.Eng., 2012, 35 (4): 659-664 |
[57] | Li Yikui (李宜奎), Kang Junhua (康俊华), Kang Zhen (康振), Geng Yanping (耿艳平), Wang Yiha (王义华), Qi Qingsheng (祁庆生). The preliminary study on mutant strains ofE.coli QQS101 in succinic acid fermentation [J]. China Biotechnology (中国生物工程杂志), 2010, 30 (10): 39-43 |
[58] | Wang D, Li Q, Mao Y, Xing J M, Su Z G. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli [J]. Appl.Microbiol.Biotechnol., 2010, 87 (6): 2025-2035 |
[59] | Cao Weijia (曹伟佳), Gou Dongmei (苟冬梅), Liang Liya (梁丽亚), Liu Rongming (刘嵘明), Chen Kequan (陈可泉), Ma Jiangfeng (马江锋), Jiang Min (姜岷). Effect of co-expression of nicotinic acid phosphoribosyl transferase and pyruvate carboxylase on succinic acid production in Escherichia coli BA002 [J]. Chin.J.Biotech. (生物工程学报), 2013, 29 (12): 1855-1859 |
[60] | Xie Xin (谢鑫), Chen Kequan (陈可泉), Liu Zhongmin (刘忠敏), Jiang Min (姜岷), Wei Ping (韦萍). Construction and anaerobic fermentation of metabolically engineeredEscherichia coli producing succinate [J]. Chin.J.Biotech. (生物工程学报), 2008, 24 (1): 101-105 |
[61] | Ailen M S, George N B, Ka Y S. Novel pathway engineering design of the anaerobic central metabolic pathway inEscherichia coli to increase succinate [J]. Yield and Productivity Metabolic Engineering, 2005, 7 (3): 229-239 |
[62] | Kang Zhen (康振), Geng Yanping (耿艳平), Zhang Yuanyuan (张园园), Qi Qingsheng (祁庆生). Construction of engineered Escherichia coli for aerobic succinate production [J]. Chin.J.Biotech . (生物工程学报), 2008, 24 (12): 2081-2085 |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[10] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[11] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[12] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[13] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[14] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
[15] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||