CIESC Journal ›› 2015, Vol. 66 ›› Issue (7): 2370-2376.DOI: 10.11949/j.issn.0438-1157.20141397
Previous Articles Next Articles
XU Dan1,2, XIAO Enrong2, XU Dong2, WU Zhenbin2
Received:
2014-09-17
Revised:
2014-11-28
Online:
2015-07-05
Published:
2015-07-05
Supported by:
supported by the National Natural Science Foundation of China (51308530), the National Science and Technology Support Program (2012BAJ21B03) and the Natural Science Foundation of Hubei Province (2013CFB419).
许丹1,2, 肖恩荣2, 徐栋2, 吴振斌2
通讯作者:
吴振斌, 肖恩荣
基金资助:
国家自然科学基金青年科学基金项目(51308530);国家科技支撑计划课题项目(2012BAJ21B03);湖北省自然科学基金项目(2013CFB419)。
CLC Number:
XU Dan, XIAO Enrong, XU Dong, WU Zhenbin. Embedding microbial fuel cell into constructed wetland systems for electricity production and wastewater treatment: state-of-the-art[J]. CIESC Journal, 2015, 66(7): 2370-2376.
许丹, 肖恩荣, 徐栋, 吴振斌. 微生物燃料电池与人工湿地耦合系统研究进展[J]. 化工学报, 2015, 66(7): 2370-2376.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20141397
[1] | Logan B E. Simultaneous wastewater treatment and biological electricity generation [J]. Water Science & Technology, 2005, 52(1): 31-37. |
[2] | Pham T H, Rabaey K, Aelterman P, et al. Microbial fuel cells in relation to conventional anaerobic digestion technology [J]. Engineering in Life Sciences, 2006, 6(3): 285-292. |
[3] | Zhang B G, Zhao H Z, Zhou S G, Shi C, Wang C, Ni J. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity [J]. Bioresour. Technol., 2009, 100(23): 5687-5693. |
[4] | Liu X W, Wang Y P, Huang Y X, Sun X F, Sheng G P, Zeng R J, Li F, Dong F, Wang S G, Tong Z H, Yu H Q. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example [J]. Biotechnol. Bioeng., 2011, 108(6): 1260-1267. |
[5] | Fu C C, Su C H, Hung T C, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis [J]. Bioresour. Technol., 2009, 100(18): 4183-4186. |
[6] | Strik D P, Hamelers H V M, Buisman C J N. Solar energy powered microbial fuel cell with a reversible bioelectrode [J]. Environ. Sci. Technol., 2009, 44(1): 532-537. |
[7] | Schamphelaire D L, Bossche L V, Dang H S, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants [J]. Environ. Sci. Technol., 2008, 42(8): 3053-3058. |
[8] | Kadlec R H, Wallace S. Treatment Wetlands [M]. Boca Raton: CRC Press, 2008: 809-810. |
[9] | Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review [J]. Eco. Eng., 2001, 16(4): 545-560. |
[10] | Song Zhiwen(宋志文), Bi Xuejun(毕学军), Cao Jun(曹军). Application of constructed wetlands in sewage treatment in small cities in China [J]. Chinese Journal of Ecology(生态学学报), 2003, 22(3): 74-78. |
[11] | Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review [J]. J. Plant Nutr. Soil Sci., 2000, 163(4): 421-31. |
[12] | Aulakh M S, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars [J]. Plant Biology, 2001, 3(2): 139-148. |
[13] | Paterson E, Hodge A, Thornton B, Millard P, Killham K. Carbon partitioning and rhizosphere C-flow in Lolium perenne as affected by CO2 concentration, irradiance and below-ground conditions [J]. Global Change Biol., 1999, 5(6): 669-678. |
[14] | Deng H, Chen Z, Zhao F. Energy from plants and microorganisms: progress in plant-microbial fuel cells [J]. ChemSusChem, 2012, 5(6): 1006-1011. |
[15] | Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer [J]. Nature, 2000, 405(6782): 94-97. |
[16] | Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation [J]. Annu. Rev. Microbiol., 1994, 48(1): 311-343. |
[17] | Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435(7045): 1098-1101. |
[18] | Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environ. Sci. Technol., 2004, 38(14): 4040-4046. |
[19] | Sukkasem C, Xu S, Park S, Boonsawangb P, Liu H. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells [J]. Water Res., 2008, 42(19): 4743-4750. |
[20] | Clauwaert P, Rabaey K, Aelterman P, Schamphelaire L D, Pham T H, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ. Sci. Technol., 2007, 41(9): 3354-3360. |
[21] | Chen Z, Huang Y, Liang J, Zhao F, Zhu Y G. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere [J]. Bioresour. Technol., 2012, 108: 55-59. |
[22] | Liu S T, Song H L, Wei S Z, Yang F, Li X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland — microbial fuel cell systems [J]. Bioresour. Technol., 2014, 166: 575-583. |
[23] | Kaku N, Yonezawa N, Kodama Y, Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field [J]. Appl. Microbiol. Biotechnol., 2008, 79(1): 43-49. |
[24] | Helder M, Strik D P, Hamelers H V, Kuhn A J, Blok C, Buisman C J. Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax [J]. Bioresour. Technol., 2010, 101(10): 3541-3547. |
[25] | Strik D P, Snel J F H, Buisman C J N. Green electricity production with living plants and bacteria in a fuel cell [J]. In. J. Energ. Res., 2008, 32(9): 870-876. |
[26] | Li X, Song H, Xiang W, Wu L. Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland [J]. Journal of Southeast University, 2012, 28(2): 175-178. |
[27] | Xia Shibin(夏世斌), Pan Rong(潘蓉), Zhang Ning(张宁), Huang Faming(黄发明), Dai Xi(代西), Wu Zhenbin(吴振斌). Study on vertical flow constructed wetland embedded with fuel cell treating micro-polluted source water [J]. Journal of Wuhan University of Technology(武汉理工大学学报), 2012, 34(2):105-109. |
[28] | Yadav A K, Dash P, Mohantya A, Abbassib R, Mishraa B K. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal [J]. Ecol. Eng., 2012, 47: 126-131. |
[29] | Liu S T, Song H L, Li X N, Yang F. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system [J]. Int. J. Photoenergy, 2013, 2013: 1-10. |
[30] | Fang Z, Song H L, Cang N, Li X N. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation [J]. Bioresour. Technol., 2013, 144: 165-171. |
[31] | Mohan S V, Raghavulu S V, Peri D, Sarma P N. Integrated function of microbial fuel bio-electrochemical treatment system cell (MFC) associated bioelectricity generation under higher substrate load [J]. Biosens. Bioelectron., 2009, 24(7): 2021-2027. |
[32] | Cheng Shuiping(成水平), Wu Zhenbin(吴振斌), Kuang Qijun(况琪军). Wetland plants [J]. Journal of Lake Sciences(湖泊科学), 2012, 14(2): 179-184. |
[33] | Timmers R A, Strik D P, Arampatzoglou C, Buisman C J, Hamelers H V. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC [J]. Bioresour. Technol., 2012, 108: 60-67. |
[34] | Connell E L, Colmer T D, Walker, D I. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination [J]. Aquat. Bot., 1999, 63(3/4): 219-228. |
[35] | Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture [J]. Environ. Sci. Technol., 2007, 41(13): 4781-4786. |
[36] | Rezaei F, Richard T L, Logan B E. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell [J]. Biotechnol. Bioeng., 2008, 101 (6): 1163-1169. |
[37] | Rabaey K, Rodriguez J, Blackall L L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K H. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. The ISME Journal, 2007, 1(1): 9-18. |
[38] | Rabaey K, Angenent L, Schroder U, Keller J. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application [M]. London: IWA Publishing, 2010: 6. |
[39] | Wei J C, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells [J]. Bioresour. Technol., 2011, 102(20): 9335-9344. |
[40] | Arends J B A, londeel V, Tennison S R, Boon N, Verstraete W. Suitability of granular carbon as an anode material for sediment microbial fuel cells [J]. J. Soils Sediment, 2012, 12(7): 1197-1206. |
[41] | Helder M, Chen W S, Harst E J, Strik D P, Hamelers H, Buisman C J, Potting J. Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell [J]. Biofuels Bioprod. Bioref., 2013, 7(1): 52-64. |
[42] | Behera M, Jana P S, Ghangrekar M M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode [J]. Bioresour. Technol., 2010, 101(4): 1183-1189. |
[43] | Huang L, Regan J M, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells [J]. Bioresour. Technol., 2011, 102(1): 316-323. |
[44] | Harnisch F, Schröder U. Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems [J]. ChemSusChem, 2009, 2(10): 921-926. |
[45] | Liu H, Cheng S, Huang L, et al. Scale-up of membrane-free single-chamber microbial fuel cells [J]. J. Power Sources, 2008, 179(1): 274-279. |
[46] | Zhao Y Q, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y S. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials [J]. Chem. Eng. J., 2013, 229: 364-370. |
[47] | Villasenor J, Capilla P, Rodrigo M A, Cañizares P, Fernández F J. Operation of a horizontal subsurface flow constructed wetland- microbial fuel cell treating wastewater under different organic loading rates [J]. Water Res., 2013, 47(17): 6731-6738. |
[48] | Feng Yujie(冯玉杰), Wang Xin(王鑫), Li He(李贺), Yang Qiao(杨俏), Qu Youpeng(曲有鹏), Shi Xinxin(史昕欣), Liu Jia(刘佳), He Weihua(何伟华), Xie Mingli(解明利). Progress in electricity generation from biomass using microbial fuel cell(MFC) [J]. Environmental Science(环境科学), 2010, 31(10): 2525-2531. |
[49] | Chen C Y, Chen T Y, Chung Y C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes [J]. Environ. Technol., 2014, 35(3): 286-293. |
[50] | Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells [J]. Bioresour. Technol., 2009, 100(14): 3518-3525. |
[51] | Savin I I, Butnaru R. Wastewater characteristics in textile finishing mills [J]. Environ. Eng. Manage J., 2008, 7: 859-864. |
[52] | Corbella C, Garfi M, Puigagut J. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation [J]. Sci. Total Environ., 2014, 470/471: 754-75. |
[53] | Sharma Y, Li B K. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor(HPB) and microbial fuel cell (MFC) [J]. Int. J. Hydrogen Energy, 2010, 35(8): 3789-3797. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[3] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[4] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[5] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[6] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[7] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[8] | Haoran BI, Yang ZHANG, Kai WANG, Chenchen XU, Yiying HUO, Biqiang CHEN, Tianwei TAN. Progress for green chemicals production by microbial manufacturing [J]. CIESC Journal, 2023, 74(1): 1-13. |
[9] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[10] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[11] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[12] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[13] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[14] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[15] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||