CIESC Journal ›› 2015, Vol. 66 ›› Issue (3): 861-871.DOI: 10.11949/j.issn.0438-1157.20141509

Previous Articles     Next Articles

Interaction between metal oxide and microorganism and application in energy and environment

LI Chaochao, FANG Xingliang, CHEN Jie, YANG Jiawei, CHENG Shao'an   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2014-10-08 Revised:2014-12-07 Online:2015-03-05 Published:2015-03-05
  • Supported by:

    supported by the National Natural Science Foundation of China (51278448), the National High Technology Research and Development Program of China (2012AA051502) and the Research Fund for the Doctoral Program of Higher Education (20110101110018).

金属氧化物与微生物相互作用及其在能源环境领域的应用

李超超, 方星亮, 陈杰, 羊家威, 成少安   

  1. 浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
  • 通讯作者: 成少安
  • 基金资助:

    国家自然科学基金项目(51278448);国家高技术研究发展计划项目(2012AA051502);高等学校博士学科点专项科研基金项目(20110101110018)。

Abstract:

Since solar power was introduced into the microbial fuel cell (MFC) field, there is great interest in microbial electrochemical-photoelectrochemical synergetic systems used for electrogenesis, fuel production or environmental cleaning. Metal oxide is a common medium in solar power conversion. Research on interaction between microorganism and metal oxide is necessary to understand synergy mechanism or enhance efficiency. In this paper, various interactions between microorganism and metal oxide are summarized according to physical absorption, microbial weathering, microbial mining, photocatalytic sterilization and microbe-metal oxide synergistic effects, providing a reference for the construction of efficient microbial electrochemical-photoelectrochemical synergetic systems.

Key words: metal oxide, microorganism, catalysis, metal-oxide-microbe interaction, biofuel, nanomaterials

摘要:

近年来,随着太阳能被引入微生物燃料电池领域,微生物电化学-光电化学协同产电、产燃料或净化环境的技术成为研究热点。太阳能转化的常用媒介是金属氧化物,探究其与微生物间的相互作用对认清协同机理、提高体系效率等方面有重大意义。综述了不同类型的金属氧化物-微生物相互作用的研究工作,包括微生物-金属氧化物间物理吸附作用、微生物对金属氧化物的矿化和风化作用、微生物-金属氧化物协同产电产燃料系统、金属氧化物光催化杀菌以及光电-微生物电化学协同治理有机污染物或重金属污染,提出了更高效的微生物电化学-光电化学体系的构建方法,为微生物-光催化材料协同体系的实际应用提供帮助。

关键词: 金属氧化物, 微生物, 催化作用, 金属氧化物与微生物相互作用, 生物燃料, 纳米材料

CLC Number: