[1] |
Niu W. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol [J]. J. Am. Chem. Soc., 2003, 125 (43): 12998-12999.
|
[2] |
Sato T, Aoyagi S, Kibayashi C. Enantioselective total synthesis of (+)-azimine and (+)-carpaine [J]. Organic Letters, 2003, 5 (21): 3839-3842.
|
[3] |
Xu Y, Qian L, Pontsler A V, McIntyre T M, Prestwich G D. Synthesis of difluoromethyl substituted lysophosphatidic acid analogues [J]. Tetrahedron, 2004, 60 (1): 43-49.
|
[4] |
Yamada-Onodera K, Norimoto A, Kawada N, Furuya R, Yamamoto H, Tani Y. Production of optically active 1,2,4-butanetriol from corresponding racemate by microbial stereoinversion [J]. Journal of Bioscience and Bioengineering, 2007, 103 (5): 494-496.
|
[5] |
United States Department of Agriculture. Biobases products: market potential and projections through 2025 [R]. US: U.S.D.A, 2008.
|
[6] |
Luo Shanguo (罗善国), Tan Huimin (谭惠民), Zhang Jianguo (张建国). Thermal degradation characteristics of co-polyether (EO-THF) and the poly(ether-urethane-urea) cured by N-100 [J]. Journal of Beijing Institute of Technology (北京理工大学学报), 1995, 15 (6): 52-60.
|
[7] |
Ren T, Liu D. Synthesis of cationic lipids from 1,2,4-butanetriol [J]. Tetrahedron Letters, 1999, 40 (2): 209-212.
|
[8] |
Wei Z, Lan H Q, Zheng J F, Huang P Q. New and concise approach to (R)-α-lipoic acid [J]. Synthetic Communications, 2009, 39 (4): 691-701.
|
[9] |
Johansson K N G, Kovacs Z M I, Lindborg B G, Stening G B. Derivatives of purine [P]: US, 5036071. 1991-07-30.
|
[10] |
Valdehuesa K N G, Liu H, Ramos K R M, Parka S J, Nisolaa G M, Leeb W-K, Chunga W-J. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli [J]. Process Biochemistry, 2014, 49 (1): 25-32.
|
[11] |
Pisacane F J. 1, 2, 4-Butanetriol: analysis and synthesis [R]. Naval Surface Weapons Center Silver Spring MD, 1982.
|
[12] |
Ikai K, Mikami M, Furukawa Y, Ho S. Process for producing 1,2,4-butanetriol [P]: DE, 69923163T2.1999.
|
[13] |
Monteith M J, Schofield D, Bailey M. Process for the preparation of butanetriols [P]: WO, 1998008793. 1998.
|
[14] |
Liu Duo (刘夺), Du Jin (杜瑾), Zhao Guangrong (赵广荣), Yuan Yingjin (元英进). Applications of synthetic biology in medicine and energy [J]. CIESC Journal (化工学报), 2011, 62 (9): 2391-2397.
|
[15] |
Li X, Cai Z, Li Y, Zhang Y. Design and construction of a non-natural malate to 1,2,4-butanetriol pathway creates possibility to produce 1,2,4-butanetriol from glucose [J]. Scientific Reports, 2014, 4. DOI: 10.1038/srep05541.
|
[16] |
Cherepanov P P, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant [J]. Gene, 1995, 158 (1): 9-14.
|
[17] |
Liu H, Ramos K R M, Valdehuesa K N G, Nisola G M, Lee W K, Chung W J. Biosynthesis of ethylene glycol in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2013, 97 (8): 3409-3417.
|
[18] |
Sambrook J//Russell D W. Molecular Cloning—A Laboratory Manual [M]. 3rd Ed. New York: Cold Spring Harbor Laboratory Press, 2001.
|
[19] |
Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield [J]. Metabolic Engineering, 2005, 7 (2): 116-127.
|
[20] |
Li Z, Gu Z, Wang M, Du G, Wu J, Chen J. Delayed supplementation of glycine enhances extracellular secretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2010, 85 (3): 553-561.
|
[21] |
Frost J W, Niu W. Microbial synthesis of D-1,2,4-butanetriol [P]: US, 12/374367. 2007-07-19.
|
[22] |
Wang X, Miller E N, Yomano L P, Zhang X, Shanmugam K T, Ingram L O. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate [J]. Applied and Environmental Microbiology, 2011, 77 (15): 5132-5140.
|
[23] |
Rodriguez G M, Atsumi S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity [J]. Microb. Cell Fact., 2012, 11 (1): 90.
|
[24] |
Leonardo M R, Cunningham P R, Clark D P. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli [J]. Journal of Bacteriology, 1993, 175 (3): 870-878.
|
[25] |
Donovan R S, Robinson C W, Glick B R. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter [J]. Journal of Industrial Microbiology, 1996, 16 (3): 145-154.
|
[26] |
Schein C H, Boix E, Haugg M, Holliger K P, Hemmi S, Frank G, Schwalbe H. Secretion of mammalian ribonucleases from Escherichia coli using the signal sequence of murine spleen ribonuclease [J]. Biochem. J., 1992, 283: 137-144.
|
[27] |
Carter P, Kelley R F, Rodrigues M L, Snedecor B, Covarrubias M, Velligan M D, Wong W L T, Rowland A M, Kotts C E, Carver M E, Yang M, Bourell J H, Shepard H M, Henner D. High level Escherichia coli expression and production of a bivalent humanized antibody fragment [J]. Nature Biotechnology, 1992, 10 (2): 163-167.
|
[28] |
Weickert M J, Doherty D H, Best E A, Olins P O. Optimization of heterologous protein production in Escherichia coli [J]. Current Opinion in Biotechnology, 1996, 7 (5): 494-499.
|
[29] |
Vinuselvi P, Lee S K. Rewiring carbon catabolite repression for microbial cell factory [J]. Biochemistry and Molecular Biology Reports, 2012, 45 (2): 59-70.
|
[30] |
Li R, Chen Q, Wang P G, Qi Q S. A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture [J]. Appl. Microbiol. Biotechnol., 2007, 75 (5): 1103-1109.
|
[31] |
Wang D, Li Q, Yang M, Zhang Y, Su Zh, Xing J. Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation [J]. Process Biochemistry, 2011, 46 (1): 365-371.
|
[32] |
Luo Y, Zhang T, Fan D, Mu T, Xue W, Hui J, Ma X. Enhancing human-like collagen accumulation by deleting the major glucose transporter ptsG in recombinant Escherichia coli BL21 [J]. Biotechnology and Applied Biochemistry, 2014, 61 (2): 237-247.
|
[33] |
Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants [J]. Microb. Cell Fact., 2011, 10 (67): 1475-2859.
|
[34] |
Song S, Park C. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator [J]. Journal of Bacteriology, 1997, 179 (22): 7025-7032.
|
[35] |
Desai T A, Rao C V. Regulation of arabinose and xylose metabolism in Escherichia coli [J]. Applied and Environmental Microbiology, 2010, 76 (5): 1524-1532.
|