CIESC Journal ›› 2015, Vol. 66 ›› Issue (6): 2098-2104.DOI: 10.11949/j.issn.0438-1157.20141934

Previous Articles     Next Articles

Preparation of magnetic CuO-Bi2O3/ Fe3O4-SiO2-MgO catalyst and its catalytic performance for formaldehyde ethynylation

WANG Junjun, LI Haitao, MA Zhiqiang, WANG Zhipeng, GUO Jiangyuan, ZHAO Yongxiang   

  1. Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2014-12-30 Revised:2015-02-25 Online:2015-06-05 Published:2015-06-05
  • Supported by:

    supported by the International S&T Cooperation Program of China (2013DFA40460), the Natural Science Foundation of Shanxi Province(2013011010-5) and the Specialized Research Fund for the Doctoral Program of Higher Education(20131401120005).

磁性CuO-Bi2O3/Fe3O4-SiO2-MgO催化剂的制备及甲醛乙炔化性能

王俊俊, 李海涛, 马志强, 王志鹏, 郭江渊, 赵永祥   

  1. 山西大学化学化工学院, 精细化学品教育部工程研究中心, 山西 太原 030006
  • 通讯作者: 赵永祥
  • 基金资助:

    国家国际科技合作项目(2013DFA40460);山西省自然科学基金项目(2013011010-5);高等学校博士学科点专项科研基金项目(20131401120005)。

Abstract:

Magnetic CuO-Bi2O3/Fe3O4-SiO2-MgO catalysts with different Cu content were prepared by using impregnation and coprecipitation methods. The obtained catalysts were characterized by atomic emission spectrometer (ICP-AES), N2 absorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and vibrating sample magnetometer (VSM). Their catalytic performance for formaldehyde ethynylation was evaluated. The results indicated that preparation method showed a great influence on the CuO station in catalysts, thus, on the performance for formaldehyde ethynylation reaction. Compared with the catalysts prepared by impregnation, the CuO-Bi2O3/Fe3O4-SiO2-MgO catalysts prepared by co-precipitation method showed higher CuO dispersion and better reducibility, so had better catalytic activity and selectivity. Moreover, Cu content was another important factor affecting catalyst activity. With Cu content increasing, the catalyst activity increased gradually. In the present work, 30% (mass) Cu loading catalyst prepared by co-precipitation method showed the highest catalytic activity. In addition, this catalyst was of good superparamagnetism and stability, so easy separated by external magnetic field for reuse. After six cycles, its stability was much better than non-paramagnetism CuO-Bi2O3/SiO2-MgO catalyst.

Key words: separation, recovery, catalysis, formaldehyde ethynylation, 1,4-butynediol, magnetic

摘要:

采用浸渍法和共沉淀法制备了一系列不同Cu含量的超顺磁CuO-Bi2O3/Fe3O4-SiO2-MgO催化剂。使用电感耦合等离子体发射光谱仪(ICP-AES)、低温N2物理吸-脱附、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、振动样品磁强计(VSM)对催化剂的组成、结构、织构及磁性能进行表征, 评价了该催化剂催化甲醛乙炔化合成1, 4-丁炔二醇的催化活性。结果表明, 制备方法对催化剂中活性组分CuO的存在状态及炔化性能有较大影响, 采用共沉淀法较浸渍法制备的催化剂具有更高的比表面积、CuO分散度与较好的还原能力, 表现出较高的炔化性能;Cu含量是影响催化剂炔化性能的另一重要因素, 随Cu含量的增加, 催化剂活性逐渐增加, 在本研究考察范围内, 以共沉淀法制备的Cu质量分数为30%的催化剂表现出最佳的甲醛乙炔化性能。同时, 该催化剂具有良好的超顺磁性, 可以在外加磁场的作用下迅速分离回收, 循环使用6次后, 其催化活性明显高于非磁性催化剂。

关键词: 分离, 回收, 催化, 甲醛乙炔化, 1, 4-丁炔二醇, 磁性

CLC Number: