[1] |
Armand M, Tarascon J M. Building better batteries [J]. Nature, 2008, 451 (7179): 652-657.
|
[2] |
Terada N, Yanagi T, Arai S, et al. Development of lithium batteries for energy storage and EV applications [J]. Journal of Power Sources, 2001, 100 (1/2): 80-92.
|
[3] |
Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4 (9): 3243-3262.
|
[4] |
Ellis B L, Lee Kyu Tae, Nazar L F. Positive electrode materials for Li-ion and Li-batteries [J]. Chemistry of Materials, 2010, 22 (3): 691-714.
|
[5] |
Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries [J]. Journal of Power Sources, 2003, 119 (6): 171-174.
|
[6] |
Koyama Y, Makimura Y, Tanaka I, et al. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2 [J]. Journal of the Electrochemical Society, 2004, 151 (9): A1499-A1506.
|
[7] |
Jung Sung-Kyun, Gwon Hyeokjo, Hong Jihyun, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries [J]. Advanced Energy Materials, 2014, 4 (1): 94-98.
|
[8] |
Xiao J, Chernova N A, Upreti S, et al. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio [J]. Phys. Chem. Chem. Phys., 2011, 13 (40): 18099-18106.
|
[9] |
Liu Xizheng, Li Huiqiao, Yoo Eunjoo, et al. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries [J]. Electrochimica Acta, 2012, 83: 253-258.
|
[10] |
Zhong Yanjun, Li Juntao, Wu Zhenguo, et al. LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery [J]. Journal of Power Sources, 2013, 234: 217-222.
|
[11] |
Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via coprecipitation [J]. Electrochimica Acta, 2004, 50 (4): 939-948.
|
[12] |
Hu Yi (胡意), Ai Changchun (艾常春), Liu Yang (刘洋), et al. Turbulent flow cycle synthesis and characterization of super-fine lithium phosphate [J]. CIESC Journal (化工学报), 2014, 65 (3): 1099-1103.
|
[13] |
Zhao Shixi, Ding Hao, Wang Yanchao, et al. Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon [J]. Journal of Alloys and Compounds,2013, 566: 206-211.
|
[14] |
Wang Jun, Zhang Minghao, Tang Changlin, et al. Microwave-irradiation synthesis of Li1.3NixCoyMn1-x-yO2.4 cathode materials for lithium ion batteries [J]. Electrochimica Acta,2012, 80: 15-21.
|
[15] |
Ding Yanhuai, Zhang Ping, Jiang Yong, et al. Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery [J]. Solid State Ionics, 2007, 178 (13/14): 967-971.
|
[16] |
Kong Jizhou, Yang Xiaoyan, Zhai Haifa, et al. Synthesis and electrochemical properties of Li-excess Li1+x[Ni0.5Co0.2Mn0.3]O2 cathode materials using ammonia-free chelating agent [J]. Journal of Alloys and Compounds, 2013, 580: 491-496.
|
[17] |
Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1) [J]. Journal of Power Sources, 2003, 119-121: 644-648.
|
[18] |
Kong Jizhou, Zhai Haifa, Ren Chong, et al. High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent [J]. Journal of Solid State Electrochemistry, 2013, 18 (1): 181-188.
|
[19] |
Liu Li, Tian Fanghua, Wang Xingyan, et al. Electrochemical behavior of spherical LiNi1/3Co1/3Mn1/3O2 as cathode material for aqueous rechargeable lithium batteries [J]. Journal of Solid State Electrochemistry, 2011, 16 (2): 491-497.
|
[20] |
Chen Yuhong, Jiao Qishuai, Wang Liang, et al. Synthesis and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05 (X=Cl, Br) cathode materials for lithium-ion battery [J]. Comptes Rendus Chimie, 2013, 16 (9): 845-849.
|
[21] |
Wang Fuming, Yu Menghan, Hsiao Yiju, et al. Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries [J]. International Journal of Electrochemical Science, 2011, 6: 1014-1026.
|
[22] |
Sun Ke, Dillon S J. A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films [J]. Electrochemistry Communications, 2011, 13 (2): 200-202.
|
[23] |
Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries [J]. Materials Research Bulletin, 2008, 43 (8/9): 1913-1942.
|