1 |
Leo V, Boudart M. Compounds of molybdenum and tungsten with high specific surface area(I). Nitrides[J]. Journal of Solid State Chemistry, 1985, 59(3): 332-347.
|
2 |
Kawamura F, Yusa H S, Taniguchi T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction[J]. Journal of the American Ceramic Society, 2018, 101(2): 949-956.
|
3 |
Yuliati L, Yang J H, Wang X C, et al. Highly active tantalum(Ⅴ) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation[J]. Journal of Materials Chemistry, 2010, 20(21): 4295.
|
4 |
Abbas S M, Rehman Z U, Rana U A, et al. MoN-decorated nitrogen doped carbon nanotubes anode with high lithium storage performance[J]. Electrochimica Acta, 2015, 190: 988-996.
|
5 |
Zhang B T, Cui G L, Zhang K J, et al. Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries[J]. Electrochimica Acta, 2014, 150: 15-22.
|
6 |
Zheng C, Luo N J, Huang S P, et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10198-10206.
|
7 |
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
|
8 |
王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677.
|
|
Wang X B, Zhao Q S, Cheng Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677.
|
9 |
牛敬苒, 邓会宁, 张伟, 等. 二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J]. 化工学报, 2020, 71(6): 2850-2856.
|
|
Niu J R, Deng H N, Zhang W, et al. Regulation of support structure by TiO2 deposition and its effect on performance of GO membranes[J]. CIESC Journal, 2020, 71(6): 2850-2856.
|
10 |
Xiang H F, Zhang K, Ji G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability[J]. Carbon, 2011, 49(5): 1787-1796.
|
11 |
Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters, 2009, 9(1): 72-75.
|
12 |
Zhao L, Hu Y S, Li H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries[J]. Advanced Materials, 2011, 23(11): 1385-1388.
|
13 |
Yang S, Feng X L, Ivanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage[J]. Angewandte Chemie International Edition, 2010, 49: 8408-8411.
|
14 |
Zhou G M, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313.
|
15 |
Zhang Y S, Zhang P, Li B, et al. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries[J]. Energy Storage Materials, 2020, 27: 159-168.
|
16 |
Ma L G, Ai X Q, Lu Y Z, et al. Development of a new synthetic strategy for highly reduced graphene oxide-CdS quantum-dot nanocomposites and their photocatalytic activity[J]. Journal of Alloys and Compounds, 2020, 828: 154406.
|
17 |
Xia J, Liu L, Yan H X, et al. Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries[J]. Electrochimica Acta, 2018, 269: 452-461.
|
18 |
Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping[J]. Carbon, 2006, 44(8): 1429-1437.
|
19 |
Cárdenas L F, Lamey D, Gómez Q S, et al. Selective three-phase hydrogenation of aromatic nitro-compounds over β-molybdenum nitride[J]. Catalysis Today, 2011, 173(1): 53-61.
|
20 |
Wu Y Q, Yang Y, Pu H, et al. SnS2 nanoparticle-integrated graphene nanosheets as high-performance and cycle-stable anodes for lithium and sodium storage[J]. Journal of Alloys and Compounds, 2020, 822: 153686.
|
21 |
Chen J J, Mao Z Y, Zhang L X, et al. Nitrogen deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017, 11(12): 12650-12657.
|
22 |
Zhu J, Tu W, Pan H, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano, 2020, 14(5): 5780-5787.
|
23 |
Lv Z, Tahir M, Lang X W, et al. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media[J]. Journal of Materials Chemistry A, 2017, 5(39): 20932-20937.
|
24 |
Zhang K J, Zhang L X, Chen X, et al. Molybdenum nitride/N-doped carbon nanospheres for lithium-O2 battery cathode electrocatalyst[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3677-3682.
|
25 |
Zhang K, Zhang L, Chen X, et al. Mesoporous cobalt molybdenum nitride: a highly active bifunctional electrocatalyst and its application in lithium–O2 batteries[J]. Journal of Physical Chemistry C, 2013, 117(2): 858-865.
|
26 |
Afanasiev P. New single source route to the molybdenum nitride Mo2N [J]. Inorganic Chemistry, 2002, 41(21): 5317-5319.
|
27 |
Zhang J, Sun Y M, Zhu J W, et al. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction[J]. Nano Energy, 2018, 52: 307-314.
|
28 |
Jiao X X, Liu Y Y, Li T T, et al. Crumpled nitrogen-doped graphene wrapped phosphorus composite as a promising anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30858-30864.
|
29 |
Gu J N, Du Z G, Zhang C, et al. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage[J]. Advanced Energy Materials, 2016, 6(18): 1600917.
|
30 |
Park H C, Lee K H, Lee Y W, et al. Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries [J]. J. Power Sources, 2014, 269: 534-541.
|
31 |
Wang X W, Sun G Z, Li N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chemical Society Reviews, 2016, 45(8): 2239-2262.
|