1 |
Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catal., 2013, 3: 862-870.
|
2 |
Adib F, Bagreev A, Bandosz T J. Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons[J]. Environ. Sci. Technol., 2000, 34: 686-692.
|
3 |
Yuan W X, Bandosz T J. Removal of hydrogen sulfide from biogas on sludge-derived adsorbents[J]. Fuel, 2007, 86: 2736-2746.
|
4 |
Bandosz T J, Bagreev A, Adib F, et al. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants[J]. Environ. Sci. Technol., 2000, 34: 1069-1074.
|
5 |
Long D H, Chen Q J, Qiao W M, et al. Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation[J]. Chem. Commun., 2009, 26: 3898-3900.
|
6 |
Yu Z F, Wang X Z, Song X D, et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal[J]. Carbon, 2015, 95: 852-860.
|
7 |
Seredych M, Bandosz T J. Desulfurization of digester gas on wood-based activated carbons modified with nitrogen: importance of surface chemistry[J]. Energy & Fuels, 2008, 22: 850-859.
|
8 |
Seredych M, Bandosz T J. Role of microporosity and nitrogen functionality on the surface of activated carbon in the process of desulfurization of digester gas[J]. J. Phys. Chem. C., 2008, 112: 4704-4711.
|
9 |
Xing W, Liu C, Zhou Z Y, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy Environ. Sci., 2012, 5: 7323-7327.
|
10 |
Bing X F, Wei Y J, Wang M, et al. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. J. Colloid Inter. Sci., 2017, 488: 207-217.
|
11 |
Shen W Z, Fan W B. Nitrogen-containing porous carbons: synthesis and application[J]. J. Mater. Chem., 2013, 1: 999-1013.
|
12 |
Machnikowski J, Grzyb B, Machnikowska H, et al. Surface chemistry of porous carbons from N-polymers and their blends with pitch[J]. Micropor. Mesopor. Mater., 2005, 82: 113-120.
|
13 |
Guo H S, Ding B, Wang J, et al. Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors[J]. Carbon, 2018, 136: 204-210.
|
14 |
Gu Y, Wu H, Xiong Z G, et al. The electrocapacitive properties of hierarchical porous reduced graphene oxide templated by hydrophobic CaCO3 spheres[J]. J. Mater. Chem. A, 2014, 2: 451-459.
|
15 |
Kim Y K, Park J H, Lee J W. Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes[J]. Carbon, 2018, 126: 215-224.
|
16 |
Li S, Jiang T, Xu Z H, et al. The Mn-promoted double-shelled CaCO3 hollow microspheres as high efficient CO2 adsorbents[J]. Chem. Eng. J., 2019, 372: 53-64.
|
17 |
徐春霞. 煤焦油的性质与加工利用[J]. 洁净煤技术, 2013, 5: 63-67.
|
|
Xu C X. Properties, processing and utilization of coal tar[J]. Clean Coal Technology, 2013, 5: 63-67.
|
18 |
史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946.
|
|
Shi X F, Yang S Y, Qian Y. Research progress of chemical chain technology in clean and efficient utilization of coal[J]. CIESC Journal, 2018, 69(12): 4931-4946.
|
19 |
程炎, 颜彬航, 李天阳, 等. 煤/煤焦油/沥青质的热等离子体裂解特性比较分析[J]. 化工学报, 2015, 66(8): 3210-3217.
|
|
Cheng Y, Yan B H, Li T Y, et al. Comparative analysis of thermal plasma cracking characteristics of coal/coal tar/asphaltene[J]. CIESC Journal, 2015, 66(8): 3210-3217.
|
20 |
Cui M J, Ren S M, Zhao H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Chem. Eng. J., 2018, 335: 255-266.
|
21 |
Jiang H, Ren D Y, Hu H F, et al. 2D Monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage[J]. Adv. Mater., 2015, 27: 3687-3695.
|
22 |
Wang J, Tang J, Xu Y, et al. Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors[J]. Nano Energy, 2016, 28: 232-240.
|
23 |
Lin T, Chen I W, Liu F, Yet al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513.
|
24 |
Guang P H, Wen C L, Dan Q, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Adv. Mater., 2010, 22: 853-857.
|
25 |
Shen F H, Liu J, Zhang Z, et al. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon[J]. Fuel Process. Technol., 2018, 171: 258-264.
|
26 |
Mochizuki T, Kubota M, Matsuda H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Process. Technol., 2016, 144: 164-169.
|
27 |
Ozekmekci M, Salkic G, Fellah M F. Use of zeolites for the removal of H2S: a mini-review[J]. Fuel Process. Technol., 2015, 139: 49-60.
|
28 |
Liu H, Jia M, Sun N, et al. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(49): 27124-27130.
|
29 |
Zhao C, Wang W, Yu Z, et al. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. J. Mater. Chem., 2010, 20(5): 976-980.
|
30 |
Yu C, Fan X M, Yu L M, et al. Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid[J]. Energy & Fuels, 2013, 27: 1499-1505.
|
31 |
Zhang Z, Wang J, Li W, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature[J]. Carbon, 2016, 96: 608-615.
|