CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 202-208.DOI: 10.11949/j.issn.0438-1157.20151015
Previous Articles Next Articles
LIU Zhuang1, XIE Rui1, JU Xiaojie1,2, WANG Wei1, CHU Liangyin1,2
Received:
2015-06-29
Revised:
2015-07-25
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (20825622, 21136006).
刘壮1, 谢锐1, 巨晓洁1,2, 汪伟1, 褚良银1,2
通讯作者:
褚良银
基金资助:
国家自然科学基金项目(20825622, 21136006)。
CLC Number:
LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics[J]. CIESC Journal, 2016, 67(1): 202-208.
刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报, 2016, 67(1): 202-208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151015
[1] | WICHERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185: 117-118. |
[2] | LEE K Y, MOONEY D J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869-1879. |
[3] | LIU M J, ISHIDA Y, EBINA Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets [J]. Nature, 2015, 517: 68-72 |
[4] | CHU L Y, XIE R, JU X J, et al. Smart Hydrogel Functional Materials[M]. Berlin, Heidelberg: Springer-Verlag, 2013. |
[5] | HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered environmentally responsive surface patterns [J]. Nature, 1998, 393: 149-152. |
[6] | JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408, 178-181. |
[7] | XIAO X C, CHU L Y, CHEN W M, et al. Positively thermo-sensitive monodisperse core-shell microspheres [J]. Adv. Funct. Mater., 2003, 13: 847-852. |
[8] | KIM S J, SPINKS G M, PROSSER S, et al. Surprising shrinkage of expanding gels under an external load [J]. Nat. Mater., 2006, 5: 48-51. |
[9] | LEE B P, KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv. Mater., 2014, 26: 3415-3419. |
[10] | LEE K, ASHER S A. Photonic crystal chemical sensors: pH and ionic strength [J]. J. Am. Chem. Soc., 2000, 122, 9534-9537. |
[11] | SHIM T S, KIM S H, HEO C J, et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers [J]. Angew. Chem. Int. Ed., 2012, 51: 1420-1423. |
[12] | MI P, JU X J, XIE R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release [J]. Polymer, 2010, 51:1648-1653. |
[13] | JIANG M Y, JU X J, FANG L, et al. A novel smart microsphere with K+-induced shrinking and aggregating property based on responsive host-guest system [J]. ACS Appl. Mater. Inter., 2014, 6: 19405-19415. |
[14] | TU T, FANG W W, SUN Z M. Visual-size molecular recognition based on gels [J]. Adv. Mater., 2013, 25: 5304-5313. |
[15] | SAMOEI G K, WANG W H, ESCOBEDO J O, et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity [J]. Angew. Chem. Int. Edit., 2006, 45: 5319-5322. |
[16] | ZHANG S B, CHU L Y, XU D, et al. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature [J]. Polym. Adv. Technol., 2008, 19: 937-743. |
[17] | JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408: 178-181. |
[18] | TATSUMA T, TAKADA K, MIYAZAKI T. UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel [J]. Adv. Mater., 2007, 19: 1249-1521. |
[19] | KWON I C, BAE Y H, KIM S W. Electrically erodible polymer gel for controlled release of drugs [J]. Nature, 1991, 354: 291-293. |
[20] | BEEBE D J, MOORE J S, BAUER J M, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels [J]. Nature, 2000, 404: 588-590. |
[21] | DONG L, AGARWAL A K, BEEBE D J, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J]. Nature, 2006, 442: 551-554. |
[22] | CHEN C, ZHU Y H, BAO H, et al. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor [J]. Chem. Commun., 2011, 47: 5530-5532. |
[23] | SIDORENKO A, KRUPENKIN T, TAYLOR A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns [J]. Science, 2007, 315: 487-490. |
[24] | TAKASHIMA Y, HATANAKA S, OTSUBO M, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions [J]. Nat. Commun., 2012, 3: 1270. |
[25] | CALVERT P. Hydrogels for soft machines [J]. Adv. Mater., 2009, 21: 743-756. |
[26] | YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators [J]. Adv. Funct. Mater., 2015 25: 2980-2991 |
[27] | HE X M, AIZENBERG M, KUKSENOK O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation [J]. Nature, 2012, 487: 214-218. |
[28] | KUMACHEVA E. Hydrogels: the catalytic curtsey [J]. Nat. Mater., 2012, 11: 665-666. |
[29] | SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications [J]. Science, 2012, 336: 1124-1128. |
[30] | STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nat. Mater., 2010, 9: 101-113. |
[31] | LIU Z, LIU L, JU X J, et al. K+-recognition capsules with squirting release mechanisms [J]. Chem. Commun., 2011, 47: 12283-12285. |
[32] | NAGASE K, KOBAYASHI J, OKANO T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering [J]. J. R Soc. Interface, 2009, 6: S293-S309. |
[33] | YOSHIDA R, UCHIDA U, KANEKO Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature, 1995, 374: 240-242. |
[34] | TANAKA T, FILLMORE D J. Kinetics of swelling of gels [J]. J. Chem. Phys., 1979, 70: 1214-1218. |
[35] | SERIZAWA T, WAKITA K, KANEKO T, et al. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment [J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235. |
[36] | SERIZAWA T, WAKITA K, AKASHI M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles [J]. Macromolecules, 2002, 35: 10-12. |
[37] | CHU L Y, KIM J W, SHAH R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17: 3499-3504 |
[38] | MOU C L, JU X J, ZHANG L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464. |
[39] | MOU C L. Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Chengdu: Sichuan University, 2014: 49-75. |
[40] | LEE W F, YEH Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels [J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160 |
[41] | ZHANG X Z, YANG Y Y, CHUNG T S, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels [J]. Langmuir, 2001, 17: 6094-6099 |
[42] | ZHUO R X, LI W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins [J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159. |
[43] | WU X S, HOFFMAN A S, PAUL Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels [J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129. |
[44] | CHEN J, PARK H, PARK K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties [J]. J. Biomed. Mater. Res., 1999, 44: 53-62. |
[45] | ZHANG Y, TAN T W. Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents [J]. J. Biomed. Eng., 2007, 24:884-889. |
[46] | XUE W, HAMLEY I W, HUGLIN M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization [J]. Polymer, 2002, 43: 5181-5186 |
[47] | XUE W, CHAMP S, HUGLIN M B, et al. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic) [J]. Eur. Polym. J., 2004, 40: 467-476. |
[48] | ZHANG J, CHU L Y, LI Y K, et al. Dual thermo-and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors [J]. Polymer, 2007, 48: 1718-1728. |
[49] | ZHANG J, CHU L Y, CHENG C J, et al. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo-and pH-responsive properties [J]. Polymer, 2008, 49: 2595-2603. |
[50] | ZHANG J, XIE R, ZHANG S B, et al. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains [J]. Polymer, 2009, 50: 2516-2525. |
[51] | WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc., 2001, 123: 11284-11289. |
[52] | ZHANG J T, HUANG S W, XUE Y N, et al. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics [J]. Macromol. Rapid Comm., 2005, 26: 1346-1350. |
[53] | YUE L L, XIE R, WEI J, et al. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism [J]. J. Colloid Interf. Sci., 2012, 377: 137-144. |
[54] | CHO E C, KIM J W, FERNANDEZ-NIEVES A, et al. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles [J]. Nano Letters, 2008, 8: 168-172 |
[55] | CHO E C, KIM J W, HYUN D C, et al. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids [J]. Langmuir, 2010, 26: 3854-3859. |
[56] | XIA L W, XIE R, JU X J, et al. Nano-structured smart hydrogels with rapid response and high elasticity [J]. Nature Commun., 2013, 4: 2226.sup>-recognition capsules with squirting release mechanisms[J]. Chem. Commun., 2011, 47: 12283-12285. |
[32] | . Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering[J]. J. R Soc. Interface, 2009, 6: S293-S309. |
[33] | . Yoshida R, Uchida U, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type grafted hydrogels with rapid deswelling response to temperature changes[J]. Nature, 1995, 374: 240-242. |
[34] | . Tanaka T, Fillmore D J. Kinetics of swelling of gels[J]. J. Chem. Phys., 1979, 70: 1214-1218. |
[35] | . Serizawa T, Wakita K, Kaneko T, Akashi M. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment[J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235. |
[36] | . Serizawa T, Wakita K, Akashi M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles[J]. Macromolecules, 2002, 35: 10-12. |
[37] | . Chu L Y, Kim J W, Shah R K, Weitz D A. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics[J]. Adv. Funct. Mater., 2007, 17: 3499-3504 |
[38] | . Mou C L, Ju X J, Zhang L, Xie R, Wang W, Deng N N, Wei J, Chen Q M, Chu L Y. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure[J]. Langmuir, 2014, 30(5): 1455-1464. |
[39] | . Mou C L (牟川淋). Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Doctor Thesis of Sichuan University, 2014: 49-75. |
[40] | . Lee W F, Yeh Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels[J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160 |
[41] | . Zhang X Z, Yang Y Y, Chung T S, Ma K X. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels[J]. Langmuir, 2001, 17: 6094-6099 |
[42] | . Zhuo R X, Li W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins[J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159. |
[43] | . Wu X S, Hoffman A S, Paul Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels[J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129. |
[44] | . Chen J,Park H,Park K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties[J]. J. Biomed. Mater. Res., 1999, 44: 53-62. |
[45] | . Zhang Y (张艳), Tan T W (谭天伟). Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents[J]. J. Biomed. Eng., 2007, 24, 884-889. |
[46] | . Xue W, Hamley I W, Huglin M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization[J]. Polymer, 2002, 43: 5181-5186 |
[47] | . Xue W, Champ S, Huglin M B, Jones T G C. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic)[J]. Eur. Polym. J., 2004, 40: 467-476. |
[48] | . Zhang J, Chu L Y, Li Y K, Lee Y M. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors[J]. Polymer, 2007, 48: 1718-1728. |
[49] | . Zhang J, Chu L Y, Cheng C J, Mi D F, Zhou M Y, Ju X J. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties[J]. Polymer, 2008, 49: 2595-2603. |
[50] | . Zhang J, Xie R, Zhang S B, Cheng C J, Ju X J, Chu L Y. 2009. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains[J]. Polymer, 2009, 50: 2516-2525. |
[51] | . Wang J P, Gan D J, Lyon L A, El-Sayed M A. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J]. J. Am. Chem. Soc., 2001, 123: 11284-11289. |
[52] | . Zhang J T, Huang S W, Xue Y N, Zhuo R X. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J]. Macromol. Rapid Comm., 2005, 26: 1346-1350. |
[53] | . Yue L L, Xie R, Wei J, Ju X J, Wang W, Chu L Y. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism[J]. J. Colloid Interf. Sci., 2012, 377: 137-144. |
[54] | . Cho E C, Kim J W, Fernandez-Nieves A, Weitz D A. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles[J]. Nano Letters, 2008, 8: 168-172 |
[55] | . Cho E C, Kim J W, Hyun D C, Jeong U, Weitz D A. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids[J]. Langmuir, 2010, 26: 3854-3859. |
[56] | . Xia L W, Xie R, Ju X J, Wang W, Chen Q M, Chu L Y. Nano-structured smart hydrogels with rapid response and high elasticity[J]. Nature Commun., 2013, 4: 2226. |
[1] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[2] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[3] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[4] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[5] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[6] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[7] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[8] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[9] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[10] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[11] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[12] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[13] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[14] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[15] | Qingling QIAN, Qing ZHU, Zhengjin YANG, Tongwen XU. Microporous Noria polymer for selective adsorption and separation of xylene isomers [J]. CIESC Journal, 2022, 73(12): 5438-5448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||