[1] |
TONG J, CHEN Y G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment[J]. Water Research, 2009, 43 (12): 2969-2976.
|
[2] |
苗志加, 薛桂松, 翁冬晨, 等. 不同碳源对EBPR系统厌氧计量学参数的影响[J]. 化工学报, 2012, 63 (12): 4034-4041. MIAO Z J, XUE G S, WENG D C, et al. Influence of different carbon sources on anaerobic stoichiometry parameters of EBPR system[J]. CIESC Journal, 2012, 63 (12): 4034-4041.
|
[3] |
LONGO S, KATSOU E, MALAMIS S, et al. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants[J]. Bioresource Technology, 2015, 175: 436-444.
|
[4] |
YUAN H Y, CHEN Y G, ZHANG H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40 (6): 2025-2029.
|
[5] |
LI X, CHEN H, HU L F, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal[J]. Environmental Science & Technology, 2011, 45 (5): 1834-1839.
|
[6] |
YUAN Y, PENG Y Z, LIU Y, et al. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions[J]. Bioresource Technology, 2014, 174: 1-5.
|
[7] |
SUN X Y, WANG W, CHEN C, et al. Acidification of waste activated sludge during thermophilic anaerobic digestion[J]. Procedia Environmental Sciences, 2012, 16: 391-400.
|
[8] |
LIU X G, DONG B, DAI X H. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH[J]. Bioresource Technology, 2013, 148: 461-466.
|
[9] |
YAN Y Y, FENG L Y, ZHANG C J, et al. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0[J]. Water Research, 2010, 44 (11): 3329-3336.
|
[10] |
YANG Q, YI J, LUO K, et al. Improving disintegration and acidification of waste activated sludge by combined alkaline and microwave pretreatment[J]. Process Safety and Environmental Protection, 2013, 91 (6): 521-526.
|
[11] |
LI X L, PENG Y Z, REN N Q, et al. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)2 adjustment[J]. Water Research, 2014, 61: 34-45.
|
[12] |
FENG L Y, WANG H, CHEN Y G, et al. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors[J]. Bioresource Technology, 2009, 100 (1): 44-49.
|
[13] |
YUAN Q, BARANOWSKI M, OLESZKIEWICZ J A. Effect of sludge type on the fermentation products[J]. Chemosphere, 2010, 80 (4): 445-449.
|
[14] |
State Environmental Protection Administration of China. Monitoring and Analytic Methods of Water and Wastewater[M]. 4th ed. Beijing: Environmental Science Press of China, 2002.
|
[15] |
DUBOIS M, GILLES K A, HAMILTON J K. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28 (3): 350-356.
|
[16] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72 (1/2): 248-254.
|
[17] |
CHEN Y G, LIU K, SU Y L, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH[J]. Bioresource Technology, 2013, 140: 97-102.
|
[18] |
YAN S T, MIYANAGA K, XING X H, et al. Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge[J]. Biochemical Engineering Journal, 2008, 39 (3): 598-603.
|
[19] |
HUANG L, CHEN B, PISTOLOZZI M, et al. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge[J]. Bioresource Technology, 2014, 153: 87-94.
|
[20] |
JIANG J G, ZHANG Y J, LI K, et al. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate[J]. Bioresource Technology, 2013, 143: 525-530.
|
[21] |
ZHANG P, CHEN Y G, ZHOU Q, et al. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology[J]. Environmental Science & Technology, 2010, 44 (24): 9343-9348.
|
[22] |
CHEN Y G, JIANG S, YUAN H Y, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41 (3): 683-689.
|
[23] |
DO?AN I, SANIN F D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method[J]. Water Research, 2009, 43 (8): 2139-2148.
|
[24] |
YUAN Q, SPARLING R, OLESZKIEWICZ J A. Waste activated sludge fermentation: Effect of solids retention time and biomass concentration[J]. Water Research, 2009, 43 (20): 5180-5186.
|
[25] |
GAO Y Q, PENG Y Z, ZHANG J Y, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2/O process[J]. Bioresource Technology, 2011, 102 (5): 4091-4097.
|
[26] |
KEVBRIN V, BOLTYANSKAYA Y, ZHILINA T, et al. Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov[J]. Extremephiles, 2013, 17 (5): 747-756.
|
[27] |
HARMS C, SCHLEICHER A, COLLINS M D, et al. Tissierella creatinophila sp. nov., a gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism[J]. International Journal of Systematic Bacteriology, 1998, 48: 983-993.
|
[28] |
SLEAT R, MAH R A, ROBINSON R. Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2[J]. International Journal of Systematic and Evolutionary Microbiology, 1985, 35: 10-15.
|
[29] |
JIE W G, PENG Y Z, REN N Q, et al. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs[J]. Bioresource Technology, 2014, 152: 124-129.
|
[30] |
XIONG H L, CHEN J L, WANG H, et al. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids[J]. Bioresource Technology, 2012, 119: 285-292.
|