[1] |
崔亚伟, 陈金发. 厨余垃圾的资源化现状及前景展望[J]. 中国资源综合利用, 2006, 24 (10): 31-32. DOI: 10.3969/j.issn.1008-9500.2006.10.013. CUI Y W, CHEN J F. Resource status and prospects of kitchen waste[J]. China Resources Comprehensive Utilization, 2006, 24 (10): 31-32. DOI: 10.3969/j.issn.1008-9500.2006.10.013.
|
[2] |
张振华, 汪华林, 胥培军, 等. 厨余垃圾的现状及其处理技术综述[J]. 再生资源研究, 2007, (5): 31-34. DOI:10.3969/j.issn.1674-0912.2007.05.008. ZHANG Z H, WANG H L, XU P J, et al. A review of current status and treatment of kitchen waste[J]. Renewable Resources Research, 2007, (5): 31-34. DOI: 10.3969/j.issn.1674-0912.2007.05.008.
|
[3] |
MINOWA T, MURAKAMI M, DOTE Y, et al. Oil production from garbage by thermochemical liquefaction[J]. Biomass and Bioenergy, 1995, 8 (2): 117-120. DOI: 10.1016/0961-9534(95)00017-2.
|
[4] |
刘振刚, 张付申. 高压热水液化厨余垃圾的可行性研究[J]. 环境工程学报, 2008, 2 (12): 1681-1684. LIU Z G, ZHANG F S. Liquefaction of kitchen waste by hot compressed water[J]. Chinese Journal of Environmental Engineering, 2008, 2 (12): 1681-1684.
|
[5] |
TOOR S S, ROSENDAHL L, NIELSEN M P, et al. Continuous production of bio-oil by catalytic liquefaction from wet distiller's grain with solubles (WDGS) from bio-ethanol production[J]. Biomass and Bioenergy, 2012, 36: 327-332. DOI: 10.1016/j.biombioe. 2011.10.044.
|
[6] |
MADSEN R B, CHRISTENSEN P S, HOULBERG K, et al. Analysis of organic gas phase compounds formed by hydrothermal liquefaction of dried distillers grains with solubles[J]. Bioresource Technology, 2015, 192: 826-830. DOI: 10.1016/j.biortech.2015.05.095.
|
[7] |
CHANNIWALA S A, PARIKH P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels[J]. Fuel, 2002, 81 (8): 1051-1063. DOI: 10.1016/S0016-2361(01)00131-4.
|
[8] |
AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (3): 1615-1624. DOI: 10.1016/j.rser.2010.11.054.
|
[9] |
QU Y X, WEI X M, ZHONG C L. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water[J]. Energy, 2003, 28 (7): 597-606. DOI: 10.1016/S0360-5442(02)00178-0.
|
[10] |
WANG C, PAN J X, LI J H, et al. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction[J]. Bioresource Technology, 2008, 99 (8): 2778-2786. DOI: 10.1016/j.biortech.2007.06.023.
|
[11] |
SATO T, OSADA M, WATANABE M, et al. Gasification of alkylphenols with supported noble metal catalysts in supercritical water[J]. Ind. Eng. Chem. Res., 2003, 42:4277-4282. DOI: 10.1021/ie030261s.
|
[12] |
FENG S H, YUAN Z S, LEITCH M, et al. Hydrothermal liquefaction of barks into bio-crude—effects of species and ash content/composition[J]. Fuel, 2014, 116: 214-220. DOI: 10.1016/j.fuel.2013.07.096.
|
[13] |
TEKIN K, KARAGÖZ S, BEKTA? S. Effect of sodium perborate monohydrate concentrations on product distributions from the hydrothermal liquefaction of Scotch pine wood[J]. Fuel Processing Technology, 2013, 110: 17-23. DOI: 10.1016/j.fuproc.2013.01.010.
|
[14] |
ROSS A B, BILLER P, KUBACKI M L, et al. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010, 89 (9): 2234-2243. DOI: 10.1016/j.fuel.2010.01.025.
|
[15] |
史权, 赵锁奇, 徐春明, 等. 傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J].质谱学报, 2008, 29 (6): 367-378. SHI Q, ZHAO S Q, XU C M, et al. Fourier transform ion cyclotron resonance mass spectrometry and its application in petroleum analysis[J]. Journal of Chinese Mass Spectrometry Society, 2008, 29 (6): 367-378.
|
[16] |
史权, 董智勇, 张亚和, 等. 石油组分高分辨质谱的数据处理[J]. 分析测试学报, 2008, 27: 246-248. DOI: 10.3969/j.issn.1004-4957.2008.z1.090. SHI Q, DONG Z Y, ZHANG Y H, et al. Data processing of high-resolution mass spectra for crude oil and its distillations[J]. Journal of Instrumental Analysis, 2008, 27: 246-248. DOI: 10.3969/j.issn.1004-4957.2008.z1.090.
|
[17] |
徐春明, 刘洋, 赵锁奇, 等. 石油沥青质中杂原子化合物的高分辨质谱分析[J]. 中国石油大学学报 (自然科学版), 2013, 37 (5): 190-195. DOI: 10.3969/j.issn.1673-5005.2013.05.028. XU C M, LIU Y, ZHAO S Q, et al. Compositional analysis of petroleum asphaltenes by negative ion electrospray high resolution FT-ICR mass spectrometry[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37 (5): 190-195. DOI: 10.3969/j.issn.1673-5005.2013.05.028.
|
[18] |
CHIABERGE S, LEONARDIS I, FIORANI T, et al. Bio-oil from waste: a comprehensive analytical study by soft-ionization FTICR mass spectrometry[J]. Energy & Fuels, 2014, 28 (3): 2019-2026. DOI: 10.1021/ef402452f.
|
[19] |
SUDASINGHE N, DUNGAN B, LAMMERS P, et al. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina[J]. Fuel, 2014, 119: 47-56. DOI: 10.1016/j.fuel.2013.11.019.
|
[20] |
SUDASINGHE N, REDDY H, CSAKAN N, et al. Temperature-dependent lipid conversion and nonlipid composition of microalgal hydrothermal liquefaction oils monitored by Fourier transform ion cyclotron resonance mass spectrometry[J]. Bioenerg. Research, 2015:1-11. DOI: 10.1007/s12155-015-9635-9.
|
[21] |
SANGUINETI M M, HOURANI N, WITT M, et al. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS[J]. Algal Research, 2015, 9: 227-235. DOI: 10.1016/j.algal.2015.02.026.
|
[22] |
VARDON D R, SHARMA B K,SCOTT J, et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge[J]. Bioresource Technology, 2011, 102 (17): 8295-8303. DOI: 10.1016/j.biortech. 2011.06.041.
|