[1] |
KANO M, NAKAGAWA Y. Data-based process monitoring process control and quality improvement: recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12-24. DOI: 10.1016/j.compchemeng.2007.07.005.
|
[2] |
李秀喜, 袁延江. 基于流程模拟的化工故障检测技术[J].化工学报, 2014, 65(11): 4472-4476.DOI: 10.3969/j.issn.0438-1157.2014.11036. LI X X, YUAN Y J. Chemical process fault detection technology based on process simulation[J].CIESC Journal, 2014, 65(11): 4472-4476.DOI: 10.3969/j.issn.0438-1157.2014.11.036.
|
[3] |
SIMOGLOU A, MARTIN E B, MORRIS A J. Multivariate statistical process control of an industrial process fluidised-bed reactor[J]. Control Engineering Practice, 2000, 8(8): 893-909. DOI: 10.1016/S0967-0661(00)00015-0.
|
[4] |
王海清, 宋执环, 王慧. PCA过程监测方法的故障检测行为分析[J].化工学报, 2002, 53(3): 297-301.DOI: 10.3321/j.issn: 0438-1157.2002.03.016. WANG H Q, SONG Z H, WANG H. Fault detection behavior analysis of PCA based process monimring approach[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(3): 297-301.DOI: 10.3321/j.issn: 0438-1157. 2002.03.016.
|
[5] |
WOLD S, SJÖSTRÖMA M, ERIKSSONB L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109-130. DOI: 10.1016/S0169- 7439(01)00155-1.
|
[6] |
MEHMOOD T, LILAND K H, SNIPEN L, et al. A review of variable selection methods in partial least squares regression[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 118: 62-69. DOI: 10.1016/j.chemolab.2012.07.010.
|
[7] |
LI S, GAO J, NYAGILO J O, et al. Probabilistic partial least square regression: a robust model for quantitative analysis of Raman spectroscopy data[C]// IEEE International Conference on Bioinformatics and Biomedicine. Atlanta: IEEE, 2011: 526-530.
|
[8] |
LANGE K L, LITTLE R J A, TAYLOR J M G. Robust statistical modeling using the t distribution[J]. Journal of the American Statistical Association, 1989, 84(408): 881-896. DOI: 10.1080/01621459.1989.10478852.
|
[9] |
SHOHAM S. Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions[J]. Pattern Recognition Society, 2002, 35(5): 1127-1142. DOI: 10.1016/S0031- 3203(01)00080-2.
|
[10] |
ARCHAMBEAU C, DELANNAY N, VERLEYSEN M. Robust probabilistic projections[C]//Proceedings of 23rd International Conference on Machine Learning. New York: ACM, 2006: 33-40.
|
[11] |
ARCHAMBEAU C, DELANNAY N, VERLEYSEN M. Mixtures of robust probabilistic principal component analyzers[J]. Neurocomputing, 2008, 71(7/8/9): 1274-1282. DOI: 10.1016/j. neucom.2007.11.029.
|
[12] |
CHEN T, MARTIN E, MONTAGUE G. Robust probabilistic PCA with missing data and contribution analysis for outlier detection[J]. Computational Statistics and Data Analysis, 2009, 53(10): 3706-3716. DOI: 10.1016/j.csda.2009.03.014.
|
[13] |
ZHU J L, GE Z Q, SONG Z H. Robust modeling of mixture probabilistic principal component analysis and process monitoring application[J]. AIChE Journal, 2014, 60(6): 2143-2157. DOI: 10.1002/aic.14419.
|
[14] |
SILVA R, SCHEINES R, GLYMOURl C, et al. Learning the structure of linear latent variable models[J]. Machine Learning Research, 2006, 7(2): 191-246.
|
[15] |
KOURTI T. Application of latent variable methods to process control and multivariate statistical process control in industry[J]. International Journal of Adaptive Control and Signal Processing, 2005, 19(4): 213-246. DOI: 10.1002/acs.859.
|
[16] |
STOICA P, XU L Z, LI J. A new type of parameter estimation algorithm for missing data problems[J]. Statistics & Probability Letters, 2005, 75(3): 219-229. DOI: 10.1016/j.spl.2005.05.018.
|
[17] |
WU C F. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1): 95-103.
|
[18] |
MURPHY K P. Machine Learning: A Probabilistic Perspective[M]. London: MIT Press, 2012: 46-49.
|
[19] |
LIU C H, RUBIN D B. ML estimation of the t distribution using EM and its extensions, ECM and ECME[J]. Statistica Sinica, 1995, 5(1): 19-39.
|
[20] |
BISHOP C M. Pattern Recognition and Machine Learning[M]. New York : Springer Press, 2006: 91-93.
|
[21] |
KIM D, LEE I B. Process monitoring based on probabilistic PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2003, 67(2): 109-123. DOI: 10.1016/S0169-7439(03)00063-7.
|
[22] |
马贺贺, 胡益, 侍洪波.基于马氏距离局部离群因子方法的复杂化工过程故障检测[J].化工学报, 2013, 64(5): 1675-1682.DOI: 10.3969/j.issn.0438-1157.2013.05.02. MA H H, HU Y, SHI H B. Fault detection of complex chemical processes using Mahalanobis distance-based local outlier factor[J].CIESC Journal, 2013, 64(5): 1675-1682. DOI: 10.3969/j.issn. 0438-1157.2013.05.02.
|
[23] |
CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. London: Springer London, 2001: 99-106.
|
[24] |
QIN S J, ZHENG Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59(2): 496-504.DOI: 10.1002/aic.13959.
|