[1] |
AMILLASTRE E, ACEVES-LARA C A, URIBELARREA J L, et al. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae [J]. Bioresource Technology, 2012, 117 (4): 242-250.
|
[2] |
SHAHSAVARANI H, HASEGAWA D, YOKOTA D, et al. Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14 [J]. Journal of Bioscience & Bioengineering, 2013, 115 (1): 20-23.
|
[3] |
ZHU L, YAN Z, ZHANG Y, et al. Engineering the robustness of industrial microbes through synthetic biology [J]. Trends in Microbiology, 2012, 20 (2): 94-101.
|
[4] |
BUSTAMANTE C J, KAISER C M, MAILLARD R A, et al. Mechanisms of cellular proteostasis: insights from single-molecule approaches [J]. Annual Review of Biophysics, 2014, 43 (5): 119-140.
|
[5] |
MORIMOTO R. Cell stress and proteostasis networks in biology, aging, and disease [J]. Biophysical Journal, 2014, 106 (2): 34a.
|
[6] |
ZHANG S X, SANDERS E, FLIESLER S J, et al. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration [J]. Experimental Eye Research, 2014, 125: 30-40.
|
[7] |
BENYAIR R, RON E, LEDERKREMER G Z. Protein quality control, retention, and degradation at the endoplasmic reticulum [J]. International Review of Cell & Molecular Biology, 2011, 292: 197-280.
|
[8] |
SMITH S E, KOEGL M, JENTSCH S. Role of the ubiquitin/proteasome system in regulated protein degradation in Saccharomyces cerevisiae [J]. Biological Chemistry, 1996, 377 (7/8): 437-446.
|
[9] |
FINLEY D, ULRICH H D, SOMMER T, et al. The ubiquitin-proteasome system of Saccharomyces cerevisiae [J]. Genetics, 2012, 192 (2): 319-360.
|
[10] |
HARTL H U, MANAJIT H. Molecular chaperones in the cytosol: from nascent chain to folded protein [J]. Science, 2002, 295 (6): 1852-1858.
|
[11] |
HIRAISHI H, MOCHIZUKI M, TAKAGI H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes [J]. Bioscience Biotechnology & Biochemistry, 2006, 70 (11): 2762-2765.
|
[12] |
KHASKHELI G B, ZUO F L, YU R, et al. Overexpression of small heat shock protein enhances heat-and salt-stress tolerance of Bifidobacterium longum NCC2705 [J]. Current Microbiology, 2015, 71: 1-8.
|
[13] |
Trotter E W, Camilla M-F K, Ludmilla B, et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 2002, 277 (47): 44817-44825.
|
[14] |
HIPP M S, PARK S H, HARTL F U. Proteostasis impairment in protein-misfolding and-aggregation disease [J]. Trends in Cell Biology, 2014, 24 (9): 506-514.
|
[15] |
XIE Z, NAIR U, KLIONSKY D. Atg8 controls phagophore expansion during autophagosome formation [J].Molecular Biology of the Cell, 2008, 19 (8): 3290-3298.
|
[16] |
NAKATOGAWA H, ICHIMURA Y, OHSUMI Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion [J].Cell, 2007, 130 (1): 165-178.
|
[17] |
SANCHEZ Y, TAULIEN J, BORKOVICH K A, et al. Hsp104 is required for tolerance to many forms of stress [J]. Embo Journal, 1992, 11 (6): 2357-2364.
|
[18] |
TESSARZ P, MOGK A, BUKAU B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation [J]. Molecular Microbiology, 2008, 68 (1): 87-97.
|
[19] |
SHI D J, WANG C L, WANG K M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36 (1): 139-147.
|
[20] |
MAGALI M, STÉPHANIE W, FLORENCE D B, et al. Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity [J]. Applied & Environmental Microbiology, 2014, 80 (10): 2973-2980.
|
[21] |
PLOURDE-OWOBI L, DURNER S, GOMA G, et al. Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability [J]. International Journal of Food Microbiology, 2000, 55 (1/2/3): 33-40.
|
[22] |
ODUMERU J A, D'AMORE T, RUSSELL I, et al. Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock [J]. Journal of Industrial Microbiology & Biotechnology, 1993, 11 (2): 113-119.
|
[23] |
MAHMUD S A, HIRASAWA T, SHIMIZU H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses [J]. Journal of Bioscience & Bioengineering, 2010, 109 (3): 262-266.
|
[24] |
VIRGILIO C D, HOTTIGER T, DOMINGUEZ J, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast [J]. European Journal of Biochemistry, 1994, 219 (1/2): 179-186.
|