[1] |
MATHIVANAN D, PARTHASARATHY N S. Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm [J]. Int. J. Adv. Manuf. Tech., 2009, 45 (9/10): 867-874.
|
[2] |
GUO W, HUA L, MAO H J. Minimization of sink mark depth in injection-molded thermoplastic through design of experiments and genetic algorithm [J]. Int. J. Adv. Manuf. Tech., 2014, 72 (1/2/3/4): 365-375.
|
[3] |
DENG Y M, ZHENG D, SUN B, et al. Injection molding optimization for minimizing the defects of weld lines [J]. Polym-Plast Technol., 2008, 47 (9): 943-952.
|
[4] |
OZCELIK B. Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method [J]. Int. Commun Heat Mass, 2011, 38 (8): 1067- 1072.
|
[5] |
KURTARAN H, ERZURUMLU T. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm [J]. Int. J. Adv. Manuf. Tech., 2006, 27 (5/6): 468-472.
|
[6] |
GAO Y H, WANG X C. An effective warpage optimization method in injection molding based on the Kriging model [J]. Int. J. Adv. Manuf. Tech., 2008, 37 (9/10): 953-960.
|
[7] |
GAO Y H, WANG X C. Surrogate-based process optimization for reducing warpage in injection molding [J]. J. Mater. Process Tech., 2009, 209 (3): 1302-1309.
|
[8] |
周香, 陈文琳, 王晓花, 等. 基于Kriging代理模型和遗传算法的注塑件翘曲优化 [J]. 塑性工程学报, 2015, (2): 142-147. ZHOU X, CHEN W L, WANG X H, et al. Warpage optimization for injection molding based on Kriging model and genetic algorithms [J]. Journal of Plasticity Engineering, 2015, (2): 142-147.
|
[9] |
KITAYAMA S, ONUKI R, YAMAZAKI K. Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization [J]. Int. J. Adv. Manuf. Tech., 2014, 72 (5/6/7/8): 827-838.
|
[10] |
WANG X Y, GU J F, SHEN C Y, et al. Warpage optimization with dynamic injection molding technology and sequential optimization method [J]. Int. J. Adv. Manuf. Tech., 2015, 78 (1/2/3/4): 177-187.
|
[11] |
刘文娟, 王新宇, 李征, 等. 基于Kriging代理模型的注塑件残余应力优化分析 [J]. 塑料工业, 2015, (1): 53-57. LIU W J, WANG X Y, LI Z, et al. Residual stress optimization of injection-molded parts based on Kriging surrogate model [J]. China Plastics Industry, 2015, (1): 53-57.
|
[12] |
DEBOOR C, RON A. Computational aspects of polynomial interpolation in several variables [J]. Math. Comput., 1992, 58 (198): 705-727.
|
[13] |
HUANG D, ALLEN T T, NOTZ W I, et al. Sequential Kriging optimization using multiple-fidelity evaluations [J]. Struct. Multidiscip. O., 2006, 32 (5): 369-382.
|
[14] |
CRESSIE N. The origins of Kriging [J]. Math. Geol., 1990, 22 (3): 239-252.
|
[15] |
SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments [J]. Statistical Science, 1989, 4 (4): 409-423.
|
[16] |
JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions [J]. J. Global Optim., 1998, 13 (4): 455-492.
|
[17] |
SHI H Z, GAO Y H, WANG X C. Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method [J]. Int. J. Adv. Manuf. Tech., 2010, 48 (9-12): 955-962.
|
[18] |
SOBESTER A, FORRESTER A I J, TOAL D J J, et al. Engineering design applications of surrogate-assisted optimization techniques [J]. Optim. Eng., 2014, 15 (1): 243-265.
|
[19] |
SUN G Y, SONG X G, BAEK S, et al. Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel [J]. Struct. Multidiscip. O., 2014, 49 (6): 897-913.
|
[20] |
GEORGIOU S D, STYLIANOU S. Block-circulant matrices for constructing optimal Latin hypercube designs [J]. Journal of Statistical Planning and Inference, 2011, 141 (5): 1933-1943.
|