CIESC Journal ›› 2016, Vol. 67 ›› Issue (3): 743-750.DOI: 10.11949/j.issn.0438-1157.20151929

Previous Articles     Next Articles

Iterative learning control of batch process with input trajectory parameterization

YE Lingjian1,2, MA Xiushui1, SONG Zhihuan2   

  1. 1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, Zhejiang, China;
    2. Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2015-12-21 Revised:2016-01-04 Online:2016-01-12 Published:2016-03-05
  • Contact: 67
  • Supported by:

    supported by the National Natural Science Foundation of China (61304081), the Natural Science Foundation of Zhejiang Province (LQ13F030007) and the Ningbo Innovation Team (2012B82002, 2013B82005).

基于输入轨迹参数化的间歇过程迭代学习控制

叶凌箭1,2, 马修水1, 宋执环2   

  1. 1. 浙江大学宁波理工学院, 浙江 宁波 315100;
    2. 浙江大学控制科学与工程学系, 浙江 杭州 310027
  • 通讯作者: 马修水
  • 基金资助:

    国家自然科学基金项目(61304081);浙江省自然科学基金项目(LQ13F030007);宁波市创新团队项目(2012B82002,2013B82005)。

Abstract:

An iterative learning control (ILC) approach with input trajectory parameterization is proposed for batch processes. In the new approach, the main characteristics of the optimal input profile are obtained to parameterize the whole input trajectory with a few scholar decision variables. The proposed ILC method maintains the simplicity of the algorithm, while improving the optimizing control performance from batch to batch under uncertainties. A batch reactor is simulated to demonstrate the effectiveness of proposed ILC method.

Key words: batchwise, optimization, chemical processes, iterative learning control, input parameterization

摘要:

针对间歇过程的迭代学习控制问题,提出了一种基于输入轨迹参数化的迭代学习控制策略。根据最优输入轨迹的主要形态特征,将其参数化为较少量的决策变量,降低传统迭代学习控制复杂性的同时维持良好的优化控制效果。基于输入轨迹参数化的迭代学习控制策略能保持算法的简洁性和易实现性,在不确定扰动影响下逐步改善产品质量。对一个间歇反应器的仿真研究验证了本文方法的有效性。

关键词: 间歇式, 优化, 化学过程, 迭代学习控制, 输入参数化

CLC Number: