[1] |
CHEN X, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications [J]. Chem. Rev., 2007, 107(7): 2891-2959.
|
[2] |
CHEN Z, JIAO Z, PAN D, et al. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure [J]. Chem. Rev., 2012, 112(7): 3833-3855.
|
[3] |
ZHANG Q, ZHANG K, XU D, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications [J]. Prog. Mater. Sci., 2014, 60: 208-337.
|
[4] |
LIU B, ZENG H C. Mesoscale organization of CuO nanoribbons: formation of dandelions [J]. J. Am. Chem. Soc., 2004, 126(26): 8124-8125.
|
[5] |
AHMAD T, CHOPRA R, RAMANUJACHARY K V, et al. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route [J]. Solid State Sciences, 2005, 7(7): 891-895.
|
[6] |
YU H G, YU J G, LIU S W, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres [J]. Chem. Mater., 2007, 19(17): 4327-4334.
|
[7] |
ZHANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties [J]. J. Am. Chem. Soc., 2012, 134(42): 17388-17391.
|
[8] |
张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在 CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5):1563-1570. DOI: 10.3969/j.issn.0438-1157.2014.05.002. ZHANG S Y, LIU H, LIU P F, et al. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks [J]. CIESC Journal, 2014, 65(5): 1563-1570.DOI: 10.3969/j.issn.0438-1157.2014.05.002.
|
[9] |
阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 60(4):805-819. YANG Q Y, LIU D H, ZHONG C L. Computational study of metal-organic frameworks [J]. CIESC Journal, 2009, 60(4): 805-819.
|
[10] |
CZAJA A U, TRUKHAN N, MULLER U. Industrial applications of metal-organic frameworks [J]. Chem. Soc. Rev., 2009, 38(5): 1284-1293.
|
[11] |
HORCAJADA P, GREF R, BAATI T, et al. Metal-organic frameworks in biomedicine [J]. Chem. Rev., 2012, 112(2): 1232-1268.
|
[12] |
KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors [J]. Chem. Rev., 2012, 112(2): 1105-1125.
|
[13] |
LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations [J]. Chem. Rev., 2012, 112(2): 869-932.
|
[14] |
WU R B, QIAN X K, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials [J]. Journal of Materials Chemistry A, 2013, 1(37): 11126-11129.
|
[15] |
ZHANG L, WU H B, LOU X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity [J]. J. Am. Chem. Soc., 2013, 135(29): 10664-10672.
|
[16] |
HU L, CHEN Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries [J]. Nanoscale, 2014, 6(3): 1236-1257.
|
[17] |
WU R B, QIAN X K, RUI X H, et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability [J]. Small, 2014, 10(10): 1932-1938.
|
[18] |
ZHANG S Y, LIU H, SUN C C, et al. CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation [J]. Journal of Materials Chemistry A, 2015, 3(10): 5294-5298.
|
[19] |
LIU H, ZHANG S Y, LIU Y Y, et al. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis [J]. Small, 2015, 11(26): 3130-3134.
|
[20] |
HU L, HUANG Y, ZHANG F, et al. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life [J]. Nanoscale, 2013, 5(10): 4186-4190.
|
[21] |
ZHANG F, CHEN C, XIAO W M, et al. CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal-organic framework precursor for preferential CO oxidation [J]. Catal. Commun., 2012, 26: 25-29.
|
[22] |
ROWSELL J L, YAGHI O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. J. Am. Chem. Soc., 2006, 128(4): 1304-1315.
|
[23] |
ZHANG S Y, LIU H, LIU P F, et al. A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1) [J]. Nanoscale, 2015, 7(21): 9411-9415.
|
[24] |
YE J Y, LIU C J. Cu3(BTC)2: CO oxidation over MOF based catalysts [J]. Chem. Commun., 2011, 47(7): 2167-2169.
|
[25] |
QIU W G, YU W, LI C Q, et al. Effect of activation temperature on catalytic performance of CuBTC for CO oxidation [J]. Chinese J. Catal., 2012, 33(4): 986-992.
|
[26] |
ISHIDA T, NAGAOKA M, AKITA T, et al. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols [J]. Chem.-Eur. J., 2008, 14(28): 8456-8460.
|
[27] |
HARUTA M. When gold is not noble: catalysis by nanoparticles [J]. Chem. Rec., 2003, 3(2): 75-87.
|
[28] |
HUANG H, ZHANG L, WU K, et al. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation[J]. Nanoscale, 2012, 4(24): 7832-7841.
|
[29] |
JERNIGAN G G, SOMORJAI G A. Carbon monoxide oxidation over three different oxidation states of copper: metallic copper, copper (Ⅰ) oxide, and copper (Ⅱ) oxide-a surface science and kinetic study [J]. J. Catal., 1994, 147(2): 567-577.
|
[30] |
HUANG T J, TSAI D H. CO oxidation behavior of copper and copper oxides [J]. Catal. Lett., 2003, 87(3/4): 173-178.
|