[1] |
PAUL E L, ATIEMO-OBENG V A, KRESTA S M. Handbook of Industrial Mixing[M]. Wiley Online Library, 2004.
|
[2] |
MUELLER S G, DUDUKOVIC M P. Gas holdup in gas-liquid stirred tanks[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10744-10750.
|
[3] |
DONG L, JOHANSEN S, ENGH T. Mass transfer at gas-liquid interfaces in stirred vessels[J]. Canadian Metallurgical Quarterly, 1992, 31(4): 299-307.
|
[4] |
RANADE V, VAN DEN AKKER H. A computational snapshot of gas-liquid flow in baffled stirred reactors[J]. Chemical Engineering Science, 1994, 49(24): 5175-5192.
|
[5] |
WANG W J, MAO Z S. Numerical simulation of gas-liquid flow in a stirred tank with a Rushton impeller[J]. Chinese Journal of Chemical Engineering, 2002, 10(4): 385-395.
|
[6] |
KHOPKAR A R, RANADE V V. CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes[J]. AIChE Journal, 2006, 52(5): 1654-1672.
|
[7] |
BRUCATO A, GRISAFI F, MONTANTE G. Particle drag coefficients in turbulent fluids[J]. Chemical Engineering Science, 1998, 53(18): 3295-3314.
|
[8] |
BAKKER A, VAN DEN AKKER H. A computational model for the gas-liquid flow in stirred reactors[J]. Chemical Engineering Research and Design, 1994, 72(A4): 594-606.
|
[9] |
ZHANG Q H, YANG C, MAO Z S, et al. Large eddy simulation of turbulent flow and mixing time in a gas-liquid stirred tank[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10124-10131.
|
[10] |
陈雷, 高正明. 多层桨气-液搅拌反应器内局部特性的数值模拟[J].北京化工大学学报(自然科学版), 2010, 37(3): 14-19. CHEN L, GAO Z M. Numerical simulation of local characteristics in an aerated stirred tank with multiple impellers[J]. Journal of Beijing Unnivesity of Chemical Technology (Natural Science Edition), 2010, 37(3): 14-19.
|
[11] |
李伟, 刘跃进, 孔丽娜, 等. Rushton搅拌釜内的气含率分布及其流动特性的模拟[J].化工学报, 2011, 62(10): 2691-2698. LI W, LIU Y J, KONG L N, et al. Simulation for gas hold-up distribution and flow behavior in Rushton stirred tank[J].CIESC Journal, 2011, 62(10): 2691-2698.
|
[12] |
李静海, 葛蔚, 欧阳洁, 等.颗粒流体复杂系统的多尺度模拟[M]. 北京: 科学出版社, 2005. LI J H, GE W, OUYANG J, et al. Multi-scale Simulation of Particle-fluid Complex Systems[M]. Beijing: Science Press, 2005.
|
[13] |
LI J, CHENG C, ZHANG Z, et al. The EMMS model-its application, development and updated concepts[J]. Chemical Engineering Science, 1999, 54(22): 5409-5425.
|
[14] |
AGRAWAL K, LOEZOS P N, SYAMLAL M, et al. The role of meso-scale in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185.
|
[15] |
杨宁.非均匀气固两相流动的计算机模拟-多尺度方法与双流体模型的结合[D]. 北京: 中国科学院过程工程研究所, 2003. YANG N. Computer simulation of heterogeneous gas-solid two-phase flow-Integration of two-fluid models with multi-scale methodology[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2003.
|
[16] |
YANG N, WANG W, GE W, et al. Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561.
|
[17] |
YANG N, WANG W, GE W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80.
|
[18] |
YANG N, CHEN J, ZHAO H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991.
|
[19] |
CHEN J, YANG N, GE W, et al. Modeling of regime transition in bubble columns with stability condition[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 290-301.
|
[20] |
YANG N, CHEN J, GE W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1): 517-526.
|
[21] |
WANG Y, XIAO Q, YANG N, et al. In-depth exploration of the Dual-Bubble-Size model for bubble columns[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 2077-2083.
|
[22] |
CHEN J, YANG N, GE W, et al. Computational fluid dynamics simulation of regime transition in bubble columns incorporating the Dual-Bubble-Size model[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8172-8179.
|
[23] |
XIAO Q, YANG N, LI J. Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2013, 100: 279-292.
|
[24] |
JIANG X, YANG N, LI J. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor[J]. Particuology, (in press). doi: 10.1016/j.partic.2015.05.011.
|
[25] |
XU T, JIANG X, YANG N, et al. CFD simulation of internal-loop airlift reactor using EMMS drag model[J]. Particuology, 2015, 19: 124-132
|
[26] |
ZHANG Y H, BAI Y L, WANG H L. CFD analysis of inter-phase forces in a bubble stirred vessel[J]. Chemical Engineering Research and Design, 2013, 91(1): 29-35.
|
[27] |
ZHANG D, DEEN N G, KUIPERS J A M. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces[J]. Chemical Engineering Science, 2006, 61(23): 7593-7608.
|
[28] |
LU W M, JU S J. Application of hot-film anemometry to air-water flow in aerated stirred tanks[J]. Chemical Engineering Communications, 1987, 56(1-6): 57-75.
|
[29] |
LU W M, JU S J. Local gas holdup, mean liquid velocity and turbulence in an aerated stirred tank using hot-film anemometry[J]. Chemical Engineering Journal, 1987, 35(1): 9-17.
|
[30] |
LEE B W, DUDUKOVIC M P. Determination of flow regime and gas holdup in gas-liquid stirred tanks[J]. Chemical Engineering Science, 2014, 109: 264-275.
|
[31] |
BOMBAC A, ZUN I, FILIPIC B, et al. Gas-filled cavity structures and local void fraction distribution in aerated stirred vessel[J]. AIChE Journal, 1997, 43(11): 2921-2931.
|
[32] |
FORD J J, HEINDEL T J, JENSEN T C, et al. X-ray computed tomography of a gas-sparged stirred-tank reactor[J]. Chemical Engineering Science, 2008, 63: 2075-2085.
|