[1] |
GE Z, ONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[2] |
YIN S, DING S X, XIE X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
|
[3] |
QIN S J. Statistical process monitoring:basics and beyond[J]. Journal of Chemometrics, 2003, 17(7/8):480-502.
|
[4] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[5] |
KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1995, 30(1):179-196.
|
[6] |
FAN J, WANG Y. Fault detection and diagnosis of nonlinear non-Gaussian dynamic processes using kernel dynamic independent component analysis[J]. Information Science, 2014, 259:369-379.
|
[7] |
KERKHOF P V D, GINS G, VANLAER J, et al. Dynamic model-based fault diagnosis for (bio)chemical batch processes[J]. Computers & Chemical Engineering, 2012, 40:12-21.
|
[8] |
LI G, QIN S J, ZHOU D. A new method of dynamic latent-variable modeling for process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6438-6445.
|
[9] |
ZHANG Y, ZHOU H, QIN S J, et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1):3-10.
|
[10] |
ZHANG Y, MA C. Decentralized fault diagnosis using multiblock kernel independent component analysis[J]. Chemical Engineering Research Design, 2012, 90(5):667-676.
|
[11] |
TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Industrial & Engineering Chemistry Research, 2013, 52(29):9897-9907.
|
[12] |
GE Z, SONG Z. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5):1947-1957.
|
[13] |
JIANG Q, WANG B, YAN X. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2497-2508.
|
[14] |
LI W. Mutual information functions versus correlation functions[J]. Journal of Statistical Physics, 1990, 60(5/6):823-837.
|
[15] |
HAN M, REN W, LIU X. Joint mutual information-based input variable selection for multivariate time series modeling[J]. Engineering Applications of Artificial Intelligence, 2015, 37:250-257.
|
[16] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[17] |
VERRON S, TIPLICA T, KOBI A. Fault detection and identification with a new feature selection based on mutual information[J]. Journal of Process Control, 2008, 18(5):479-490.
|
[18] |
JIANG Q, YAN X. Plant-wide process monitoring based on mutual information-multiblock principal component analysis[J]. ISA Transactions, 2014, 53(5):1516-1527.
|
[19] |
GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2009, 23(12):636-650.
|
[20] |
赵忠盖, 刘飞. 因子分析及其在过程监控中的应用[J]. 化工学报, 2007, 58(4):970-974. ZHAO Z G, LIU F. Factor analysis and its application to process monitoring[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4):970-974.
|
[21] |
TONG C, PALAZOGLU A, YAN X. Improved ICA for process monitoring based on ensemble learning and Bayesian inference[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 135:141-149.
|
[22] |
韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149.
|