[1] |
SRIKHIRIN P, APHORNRATANA S, CHUNGPAIBULPATANA S. A review of absorption refrigeration technologies[J]. Renewable & Sustainable Energy Reviews, 2001, 5(4):343-372.
|
[2] |
DENG J, WANG R Z, HAN G Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems[J]. Progress in Energy & Combustion Science, 2011, 37(2):172-203.
|
[3] |
GOSWAMI D Y. Solar thermal power technology:present status and ideas for the future[J]. Energy Sources, 1998, 20(2):137-145.
|
[4] |
HEROLD K E, RADERMACHER R, KLEIN S A. Absorption Chillers and Heat Pumps[M]. New York:CRC Press, 1996:189-191.
|
[5] |
GOSWAMI D Y, STEFANAKOS E, RAHMAN M M. Analysis of power and cooling cogeneration using ammonia-water mixture[J]. Energy, 2010, 35(12):4649-4657.
|
[6] |
KALINA A I. Generation of energy by means of a working fluid, and regeneration of a working fluid:US 4346561[P]. 1982-08-31.
|
[7] |
ZHANG X, HE M, ZHANG Y. A review of research on the Kalina cycle[J]. Renewable & Sustainable Energy Reviews, 2012, 16(7):5309-5318.
|
[8] |
LOLOS P A, ROGDAKIS E D. A Kalina power cycle driven by renewable energy sources[J]. Energy, 2009, 34(4):457-464.
|
[9] |
KALINA A I, LEIBOWITZ H M. System design and experimental development of the Kalina cycle technology[J]. Texas A & M University, 1987.
|
[10] |
NASRUDDIN, USVIKA R, RIFALDI M, et al. Energy and exergy analysis of Kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation[J]. Journal of Mechanical Science & Technology, 2009, 23(7):1871-1876.
|
[11] |
MLCAK H A. Kalina cycle concepts for low temperature geothermal[J/OL]. Transactions-Geothermal Resources Council, 2002, 26:707-713. http://pubs.geothermal-library.org/lib/grc/1019685.pdf.
|
[12] |
HETTIARACHCHI H D M, GOLUBOVIC M, WOREK W M, et al. The performance of the Kalina cycle system 11(KCS11) with low-temperature heat sources[J]. Journal of Energy Resources Technology, 2007, 129(3):243-247.
|
[13] |
ELSAYED A, EMBAYE M, ALDADAH R, et al. Thermodynamic performance of Kalina cycle system 11(KCS11):feasibility of using alternative zeotropic mixtures[J]. International Journal of Low-Carbon Technologies, 2013, 8(s1):i69-i78.
|
[14] |
SUN F, ZHOU W, IKEGAMI Y, et al. Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11(KCS-11)[J]. Renewable Energy, 2014, 66(6):268-279.
|
[15] |
HE J, LIU C, XU X, et al. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve[J]. Energy, 2014, 64(1):389-397.
|
[16] |
KIM K H, HAN C H, KIM K. Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles[J]. Thermochimica Acta, 2012, 530(1):7-16.
|
[17] |
MORAN M J, SHAPIRO H N, BOETTNER D D, et al. Fundamentals of Engineering Thermodynamics[M]. 6th ed. New York:John Wiley & Sons Inc., 2007:340.
|
[18] |
GANJEHKAVIRI A, JAAFAR M N M, HOSSEINI S E. Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant[J]. Energy Conversion & Management, 2015, 89(89):231-243.
|
[19] |
CHARBONNEAU P. Genetic algorithms in astronomy and astrophysics[J]. Astrophysical Journal Supplement, 1995, 101(2):309.
|
[20] |
LIN D, ZHU Q, LI X. Thermodynamic comparative analyses between (organic) Rankine cycle and Kalina cycle[J]. Energy Procedia, 2015, 75:1618-1623.
|