[1] |
王定标, 王宏斌, 梁珍祥. 扭曲三叶管传热与流阻性能的数值研究[J]. 化工学报, 2012, 63(7):2064-2069. WANG D B, WANG H B, LIANG Z X. Numerical research on heat transfer and flow resistance performance of twisted trifoliate tube[J]. CIESC Journal, 2012, 63(7):2064-2069.
|
[2] |
ZHANG C C, WANG D B, ZHU Y J, et al. Numerical study on heat transfer and flow characteristics of a tube fitted with double spiral spring[J]. International Journal of Thermal Sciences, 2015, 94:18-27.
|
[3] |
ZHANG C C, WANG D B, REN K, et al. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger[J]. Renewable and Sustainable Energy Reviews, 2016, 53:433-449.
|
[4] |
RAO Y, XU Y M, WAN C Y. A numerical study of the flow and heat transfer in the pin fin-dimple channels with various dimple depths[J]. Journal of Heat Transfer, 2012, 134(7):839-847.
|
[5] |
ABDUS S, LEE K D, KIM K Y. Multi-objective optimization of a dimpled channel for heat transfer augmentation[J]. Heat and Mass Transfer, 2008, 45(2):207-217.
|
[6] |
LI R, HE Y L, CHU P, et al. Numerical simulation of dimpled tubes for heat transfer enhancement[J]. Journal of Engineering Thermophysics, 2008, 29(11):1947-1949.
|
[7] |
王定标, 姜逢章, 杨丽云, 等. 蜂窝板传热元件的数值模拟[J]. 郑州大学学报(工学版), 2008, 18(1):5-9. WANG D B, JIANG F Z, YANG L Y, et al. Numerical simulation for honeycombed plate heat transfer components[J]. Journal of Zhengzhou University:Engineering Science, 2008, 18(1):5-9.
|
[8] |
李隆键, 陈欢, 吴治娟. 蜂窝板换热器内部流动传热特性研究[J]. 制冷学报, 2012, 33(5):49-53. LI L J, CHEN H, WU Z J. Research on fluid flow and heat transfer characteristics in channel of honeycombed plate heat exchanger[J]. Journal of Refrigeration, 2012, 33(5):49-53.
|
[9] |
陈欢. 蜂窝板换热器内部流动与传热特性研究[D]. 重庆:重庆大学, 2012 CHEN H. Research on fluid flow and heat transfer characteristics in channel of honeycombed plate heat exchanger[D]. Chongqing:Chongqing University, 2012.
|
[10] |
MAHMOOD G I, LIGRANI P M. Heat transfer in a dimpled channel:combined influences of aspect ratio, temperature ratio, Reynolds number and flow structure[J]. International Journal of Heat and Mass Transfer, 2002, 45(2):2011-2020.
|
[11] |
ISAEV S A, KOMEV N V, LEONTIEV A I. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(5):178-197.
|
[12] |
王怡飞,陈群. 基于(火积)耗散热阻的换热器网络优化[J]. 化工学报,2015,66(S1):272-276. WANG Y F, CHEN Q. An entransy dissipation resistance-based method for optimization of heat exchanger networks[J]. CIESC Journal, 2015, 66(S1):272-276.
|
[13] |
GUO Z Y, LIU X B, TAO W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14):2877-2884.
|
[14] |
GUO Z Y, ZHU H Y, LIANG X G. Entransy-a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14):2545-2556.
|
[15] |
HE Y L, TAO W Q. Numerical studies on the inherent interrelationship between field synergy principle and entransy dissipation extreme principle for enhancing convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2014, 74:196-205.
|
[16] |
CHENG X T, ZHANG Q Z, LIANG X G. Analyses of entransy dissipation, entropy generation and entransy-dissipation-based thermal resistance on heat exchanger optimization[J]. Applied Thermal Engineering, 2012, 38:31-39.
|
[17] |
朱宏晔. 基于(火积)耗散的最小热阻原理[D]. 北京:清华大学, 2007. ZHU H Y. The minimum thermal resistance principle based on entransy dissipation[D]. Beijing:Tsinghua University, 2007.
|