CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 142-147.doi: 10.11949/j.issn.0438-1157.20160785

Previous Articles     Next Articles

Heat transfer enhancement of heat tube with variable cross-section

WANG Ke1, DONG Xiaolin2, XU Weifeng3, LIU Zunchao1, LIU Minshan1   

  1. 1 Key Laboratory of Process Heat Transfer & Energy Saving of Henan Province, Zhengzhou University, Zhengzhou 450002, Henan, China;
    2 Henan Province Institute of Science and Technology Information, Zhengzhou 450003, Henan, China;
    3 Wuhuan Engineering Co., Ltd., Wuhan 430223, Hubei, China
  • Received:2016-06-06 Revised:2016-06-10 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51476147) and the Fundamental and Frontier Technology Research Project of Henan Province (142300410066).

Abstract:

The issue of heat transfer enhancement is analyzed for the widely existed problem of the low heat transfer coefficient of laminar convective heat transfer in tubes. A new type of tube with variable cross-section is introduced under the directions of the heat transfer enhancement principles. Models of new tubes with variable cross-section under different parameters and general round tube are established. With large CFD analysis software FLUENT, and the influence on laminar convective heat transfer in tubes of new variable cross-section heat exchange tubes are investigated. Results show that the new tubes with variable cross-section could markedly enhance the laminar convective heat transfer of the tube side with less additional increase of flow resistance, and has a better synthetic performance of heat transfer enhancement. Within the scope of this study, Nu and η of new heat tubes both increase with the decrease of L1/di or L2/di, and η of new heat tubes is greater than 2.22. The results provide a certain guidance and theoretical basis for the enhancement of laminar convective heat transfer in tubes.

Key words: heat tube, variable cross-section, heat transfer enhancement, numerical simulation, laminar flow

CLC Number: 

  • TK124
[1] 陈永东, 陈学东. 我国大型换热器的技术进展[J]. 机械工程学报, 2013, 49(10):134-143. CHEN Y D, CHEN X D. Technology development of large-scale heat exchanger in china[J]. Journal of Mechanical Engineering, 2013, 49(10):134-143.
[2] MASTER B I, CHUNANGAD K S, BOXMA A J, et al. Most frequently used heat exchanger from pioneering research to worldwide application[J] Heat Transfer Engineering, 2006, 27(6):4-11.
[3] 董其伍, 刘敏珊. 纵流壳程换热器[M]. 北京:化学工业出版社, 2007:1-5. DONG Q W, LIU M S. Longitudinal Heat Exchanger[M]. Beijing:Chemical Industry Press, 2007:1-5.
[4] TAM H K, TAM L M, TAM S C, et al. New optimization method, the algorithms of changes, for heat exchanger design[J]. Chinese Journal of Mechanical Engineering, 2012, 25(14):55-62.
[5] 孟继安, 李志信, 过增元. 螺旋扭曲椭圆管层流换热与流阻特性模拟分析[J]. 工程热物理学报, 2002, 23(增刊):117-120. MENG J A, LI Z X, GUO Z Y, et al. Simulation and analysis on laminar flow and heat transfer in twisted ellipse-tube[J]. Journal of Engineering Thermophysics, 2002, 23(Supplement):117-120.
[6] 洪宇翔, 邓先和, 张连山. 管间高黏度流体的有效传热温差缓变特性[J]. 化工学报, 2012, 63(2):441-447. HONG Y X, DENG X H, ZHANG L S. Slow change of effective heat transfer temperature difference of highly viscous fluid on shell side[J]. CIESC Journal, 2012, 63(2):441-447.
[7] 孙东亮, 王良璧. 含扭曲带管内流动与传热的数值模拟[J]. 化工学报, 2004,55(9):1422-1427. SUN D L, WANG L B. Numerical simulation of fluid flow and heat transfer in tube inserting twisterd-tape[J]. Journal of Chemical Industry and Engineering(China), 2004,55(9):1422-1427.
[8] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat & Mass Transfer, 1998, 41(14):2221-2225.
[9] 孟继安, 陈泽敬, 李志信, 等. 管内对流换热的场协同分析及换热强化[J]. 工程热物理学报, 2003, 24(4):652-654. MENG J A, CHEN Z J, LI Z X, et al. Field coordination analysis and convection heat transfer enhancement in duct[J]. Journal of Engineering Thermophysics, 2003, 24(4):652-654.
[10] 张震, 杨卫民, 关昌峰,等. 螺旋叶片转子强化传热机理分析[J]. 化工学报, 2013, 64(11):3927-3932. ZHANG Z, YANG W M, GUAN C F, et al. Analysis on heat transfer enhancement mechanism of helical blade rotor[J]. CIESC Journal, 2013, 64(11):3927-3932.
[11] 杜文静, 王红福, 曹兴,等. 新型六分扇形螺旋折流板换热器壳程传热及流动特性[J]. 化工学报, 2013, 64(9):3123-3129. DU W J, WANG H F, CAO X, et al. Heat transfer and fluid flow on shell-side of heat exchangers with novel sextant sector helical baffles[J]. CIESC Journal, 2013, 64(9):3123-3129.
[12] WANG Y Q, WANG D, JIN Z L, et al. Experimental and numerical study of the laminar flow and heat transfer in a rectangular channel with the walls, corrugated in the orthogonal directions[J]. Chemical Engineering & Technology, 2016, 39(3):551-558.
[13] WANG Y Q, GU X, JIN Z L, et al. Characteristics of heat transfer for tube banks in crossflow and its relation with that in shell-and-tube heat exchangers[J]. International Journal of Heat & Mass Transfer, 2016, 93:584-594.
[14] 朱冬生, 谭祥辉, 曾力丁. 扭曲椭圆管管内传热与压降性能的研究[J]. 化学工程, 2013, 41(1):9-14. ZHU D S, TAN X H, ZENG L D. Heat transfer and pressure drop performances of twisted oval tubes[J]. Chemical Engineering, 2013, 41(1):9-14.
[15] WEBB R L, ECKERT E R G. Application of rough surfaces to heat exchanger design[J]. International Journal of Heat & Mass Transfer, 1972, 15(9):1647-1658.
[16] 田丽亭, 何雅玲, 楚攀,等. 不同排列方式下三角翼波纹翅片管换热器的换热性能比较[J]. 动力工程学报, 2009, 29(1):78-83. TIAN L T, HE Y L, CHU P, et al. Heat transfer performance comparison of wavy finned tube heat exchanger with delta winglets under different arrays[J]. Journal of Power Engineering, 2009, 29(1):78-83.
[17] 杨荔, 李志信. 扭曲椭圆管层流换热的数值研究[J]. 工程力学, 2003, 20(5):144-148. YANG L, LI Z X. Numerical analysis of laminar flow and heat transfer in twisted ellipse tubes[J]. Engineering Mechanics, 2003, 20(5):144-148.
[18] LEE K S, OH S J. Optimal shape of the multi-passage branching system in a single-phase parallel-flow heat exchanger[J]. International Journal of Refrigeration, 2004, 27(1):82-88.
[19] KIM M S, LEE K S, SONG S. Effects of pass arrangement and optimization of design parameters on the thermal performance of a multi-pass heat exchanger[J]. Hydrology & Earth System Sciences, 2008, 29(1):352-363.
[1] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[2] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[3] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[4] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[5] Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973.
[6] Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938.
[7] Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508.
[8] Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763.
[9] Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538.
[10] Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498.
[11] Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144.
[12] Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312.
[13] Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072.
[14] Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238.
[15] Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!