CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 142-147.doi: 10.11949/j.issn.0438-1157.20160785

Previous Articles     Next Articles

Heat transfer enhancement of heat tube with variable cross-section

WANG Ke1, DONG Xiaolin2, XU Weifeng3, LIU Zunchao1, LIU Minshan1   

  1. 1 Key Laboratory of Process Heat Transfer & Energy Saving of Henan Province, Zhengzhou University, Zhengzhou 450002, Henan, China;
    2 Henan Province Institute of Science and Technology Information, Zhengzhou 450003, Henan, China;
    3 Wuhuan Engineering Co., Ltd., Wuhan 430223, Hubei, China
  • Received:2016-06-06 Revised:2016-06-10 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51476147) and the Fundamental and Frontier Technology Research Project of Henan Province (142300410066).


The issue of heat transfer enhancement is analyzed for the widely existed problem of the low heat transfer coefficient of laminar convective heat transfer in tubes. A new type of tube with variable cross-section is introduced under the directions of the heat transfer enhancement principles. Models of new tubes with variable cross-section under different parameters and general round tube are established. With large CFD analysis software FLUENT, and the influence on laminar convective heat transfer in tubes of new variable cross-section heat exchange tubes are investigated. Results show that the new tubes with variable cross-section could markedly enhance the laminar convective heat transfer of the tube side with less additional increase of flow resistance, and has a better synthetic performance of heat transfer enhancement. Within the scope of this study, Nu and η of new heat tubes both increase with the decrease of L1/di or L2/di, and η of new heat tubes is greater than 2.22. The results provide a certain guidance and theoretical basis for the enhancement of laminar convective heat transfer in tubes.

Key words: heat tube, variable cross-section, heat transfer enhancement, numerical simulation, laminar flow

CLC Number: 

  • TK124
[1] 陈永东, 陈学东. 我国大型换热器的技术进展[J]. 机械工程学报, 2013, 49(10):134-143. CHEN Y D, CHEN X D. Technology development of large-scale heat exchanger in china[J]. Journal of Mechanical Engineering, 2013, 49(10):134-143.
[2] MASTER B I, CHUNANGAD K S, BOXMA A J, et al. Most frequently used heat exchanger from pioneering research to worldwide application[J] Heat Transfer Engineering, 2006, 27(6):4-11.
[3] 董其伍, 刘敏珊. 纵流壳程换热器[M]. 北京:化学工业出版社, 2007:1-5. DONG Q W, LIU M S. Longitudinal Heat Exchanger[M]. Beijing:Chemical Industry Press, 2007:1-5.
[4] TAM H K, TAM L M, TAM S C, et al. New optimization method, the algorithms of changes, for heat exchanger design[J]. Chinese Journal of Mechanical Engineering, 2012, 25(14):55-62.
[5] 孟继安, 李志信, 过增元. 螺旋扭曲椭圆管层流换热与流阻特性模拟分析[J]. 工程热物理学报, 2002, 23(增刊):117-120. MENG J A, LI Z X, GUO Z Y, et al. Simulation and analysis on laminar flow and heat transfer in twisted ellipse-tube[J]. Journal of Engineering Thermophysics, 2002, 23(Supplement):117-120.
[6] 洪宇翔, 邓先和, 张连山. 管间高黏度流体的有效传热温差缓变特性[J]. 化工学报, 2012, 63(2):441-447. HONG Y X, DENG X H, ZHANG L S. Slow change of effective heat transfer temperature difference of highly viscous fluid on shell side[J]. CIESC Journal, 2012, 63(2):441-447.
[7] 孙东亮, 王良璧. 含扭曲带管内流动与传热的数值模拟[J]. 化工学报, 2004,55(9):1422-1427. SUN D L, WANG L B. Numerical simulation of fluid flow and heat transfer in tube inserting twisterd-tape[J]. Journal of Chemical Industry and Engineering(China), 2004,55(9):1422-1427.
[8] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat & Mass Transfer, 1998, 41(14):2221-2225.
[9] 孟继安, 陈泽敬, 李志信, 等. 管内对流换热的场协同分析及换热强化[J]. 工程热物理学报, 2003, 24(4):652-654. MENG J A, CHEN Z J, LI Z X, et al. Field coordination analysis and convection heat transfer enhancement in duct[J]. Journal of Engineering Thermophysics, 2003, 24(4):652-654.
[10] 张震, 杨卫民, 关昌峰,等. 螺旋叶片转子强化传热机理分析[J]. 化工学报, 2013, 64(11):3927-3932. ZHANG Z, YANG W M, GUAN C F, et al. Analysis on heat transfer enhancement mechanism of helical blade rotor[J]. CIESC Journal, 2013, 64(11):3927-3932.
[11] 杜文静, 王红福, 曹兴,等. 新型六分扇形螺旋折流板换热器壳程传热及流动特性[J]. 化工学报, 2013, 64(9):3123-3129. DU W J, WANG H F, CAO X, et al. Heat transfer and fluid flow on shell-side of heat exchangers with novel sextant sector helical baffles[J]. CIESC Journal, 2013, 64(9):3123-3129.
[12] WANG Y Q, WANG D, JIN Z L, et al. Experimental and numerical study of the laminar flow and heat transfer in a rectangular channel with the walls, corrugated in the orthogonal directions[J]. Chemical Engineering & Technology, 2016, 39(3):551-558.
[13] WANG Y Q, GU X, JIN Z L, et al. Characteristics of heat transfer for tube banks in crossflow and its relation with that in shell-and-tube heat exchangers[J]. International Journal of Heat & Mass Transfer, 2016, 93:584-594.
[14] 朱冬生, 谭祥辉, 曾力丁. 扭曲椭圆管管内传热与压降性能的研究[J]. 化学工程, 2013, 41(1):9-14. ZHU D S, TAN X H, ZENG L D. Heat transfer and pressure drop performances of twisted oval tubes[J]. Chemical Engineering, 2013, 41(1):9-14.
[15] WEBB R L, ECKERT E R G. Application of rough surfaces to heat exchanger design[J]. International Journal of Heat & Mass Transfer, 1972, 15(9):1647-1658.
[16] 田丽亭, 何雅玲, 楚攀,等. 不同排列方式下三角翼波纹翅片管换热器的换热性能比较[J]. 动力工程学报, 2009, 29(1):78-83. TIAN L T, HE Y L, CHU P, et al. Heat transfer performance comparison of wavy finned tube heat exchanger with delta winglets under different arrays[J]. Journal of Power Engineering, 2009, 29(1):78-83.
[17] 杨荔, 李志信. 扭曲椭圆管层流换热的数值研究[J]. 工程力学, 2003, 20(5):144-148. YANG L, LI Z X. Numerical analysis of laminar flow and heat transfer in twisted ellipse tubes[J]. Engineering Mechanics, 2003, 20(5):144-148.
[18] LEE K S, OH S J. Optimal shape of the multi-passage branching system in a single-phase parallel-flow heat exchanger[J]. International Journal of Refrigeration, 2004, 27(1):82-88.
[19] KIM M S, LEE K S, SONG S. Effects of pass arrangement and optimization of design parameters on the thermal performance of a multi-pass heat exchanger[J]. Hydrology & Earth System Sciences, 2008, 29(1):352-363.
[1] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[2] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[3] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[4] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[5] Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973.
[6] Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938.
[7] Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508.
[8] Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763.
[9] Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538.
[10] Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498.
[11] Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144.
[12] Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312.
[13] Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072.
[14] Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238.
[15] Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437.
Full text



No Suggested Reading articles found!