[1] |
YARI M, MEHR A S, ZARE V, et al. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source[J]. Energy, 2015, 83:712-722.
|
[2] |
QUOILIN S, DECLAYE S, TCHANCHE B F, et al. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles[J]. Applied Thermal Engineering, 2011, 31(14/15):2885-2893.
|
[3] |
付文成, 朱家玲, 张伟, 等. Kalina地热发电循环模型建立及热力性能分析[J]. 太阳能学报, 2014, 35(7):1144-1150. FU W C, ZHU J L, ZHANG W, et al. Study on the model establishment and the thermal performance analysis of Kalina cycle system[J]. Acta Energiae Solaris Sinica, 2014, 35(7):1144-1150.
|
[4] |
LIN D D, ZHU Q, LI X G.. Thermodynamic comparative analyses between (organic) Rankine cycle and Kalina cycle[J]. Energy Procedia, 2015, 75:1618-1623.
|
[5] |
ZHANG Y, HE M G, JIA Z, et al. First law-based thermodynamic analysis on Kalina cycle[J]. Frontiers of Energy and Power Engineering in China, 2008, 2:145-151.
|
[6] |
El-SAYED Y M, TRIBUS M. A theoretical comparison of the Rankine and Kalina cycles[J]. ASME, Advanced Energy Systems Division (Publication) AES, 1985, 1:97-102.
|
[7] |
OGRISECK S. Integration of Kalina cycle in a combined heat and power plant, a case study[J]. Applied Thermal Engineering, 2009, 29(14):2843-2848.
|
[8] |
王江峰, 王家全, 戴义平. 卡林纳循环在中低温余热利用中的应用研究[J]. 汽轮机技术, 2008, 50(3):208-210. WANG J F, WANG J Q, DAI Y P. Study on the application of Kalina cycle in the middle and low temperature waste heat recovery[J]. Turbine Technology, 2008, 50(3):208-210.
|
[9] |
何嘉诚. 带两相膨胀的KCS34的热力学分析[D]. 重庆:重庆大学, 2013. HE J C. The thermodynamic analysis of modified KCS 34 with two-phase expander[D]. Chongqing:Chongqing University, 2013.
|
[10] |
RODRÍGUEZ C E C, PALACIO J C E, VENTURINI O J, et al. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil[J]. Applied Thermal Engineering, 2013, 52(1):109-119.
|
[11] |
LI S L, DAI Y P. Thermo-economic comparison of Kalina and CO2 transcritical power cycle for low temperature geothermal sources in China[J]. Applied Thermal Engineering, 2014, 70(1):139-152.
|
[12] |
WU S Y, LI C, XIAO L. The role of outlet temperature of flue gas in organic Rankine cycle considering low temperature corrosion[J]. Journal of Mechanical Science and Technology, 2014, 28(12):5213-5219.
|
[13] |
何新平. Kalina循环与Rankine循环在水泥窑低温余热发电中的热力学对比分析[J]. 水泥技术, 2010, (3):106-111. HE X P. Thermodynamic analysis between Kalina and Rankine circulation during waste heat power generation in cement kiln[J]. Cement Technology, 2010, (3):106-111.
|
[14] |
HUA J Y, LI G, CHEN Y P, et al. Optimization of thermal parameters of boiler in triple-pressure Kalina cycle for waste heat recovery[J]. Applied Thermal Engineering, 2015, 91:1026-1031.
|
[15] |
MLCAK H A. An introduction to the Kalina cycle[J]. Power, 1996, 30:765-776.
|
[16] |
ZHANG X X, HE M G, ZHANG Y. A review of research on the Kalina cycle[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7):5309-5318.
|
[17] |
HE J C, LIU C, XU X X, et al. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve[J]. Energy, 2014, 64(1):389-397.
|
[18] |
MODI A, HAGLIND F. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications[J]. Applied Thermal Engineering, 2015, 76:196-205.
|
[19] |
HETTIARACHCHI H D M, GOLUBOVIC M, WOREK W M, et al. The performance of the Kalina cycle system 11(KCS-11) with low-temperature heat sources[J]. Journal of Energy Resources Technology, 2007, 129(3):243-247.
|
[20] |
KARELLAS S, SCHUSTER A. Supercritical fluid parameters in organic Rankine cycle applications[J]. International Journal of Thermodynamics, 2008, 11(3):101-108.
|
[21] |
TURTON R, BAILIE R C, WHITING W B, et al. Analysis, Synthesis and Design of Chemical Process[M]. 4th ed. New Jersey:Prentice Hall, 2012.
|
[22] |
国家发展和改革委员会. 中华人民共和国石油天然气行业标准分离器规范:SY/T 0515-2007[S]. 北京:石油工业出版社, 2008 National Development and Reform Commission. The People Republic of China petroleum natural gas profession standard-specification for oil and gas separators:SY/T 0515-2007[S]. Beijing:Petroleum Industry Press, 2008.
|
[23] |
MIGNARD D. Correlating the chemical engineering plant cost index with macro-economic indicators[J]. Chemical Engineering Research and Design, 2014, 92(2):285-294.
|
[24] |
SCHUSTER A, KARELLAS S, KAKARAS E, et al. Energetic and economic investigation of organic Rankine cycle applications[J]. Applied Thermal Engineering, 2009, 29(8/9):1809-1817.
|
[25] |
SUN J, LI W H. Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant[J]. Applied Thermal Engineering, 2011, 31(11/12):2032-2041.
|
[26] |
ROY J P, MISHRA M K, MISRA A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle[J]. Energy, 2010, 35(12):5049-5062.
|
[27] |
NASRUDDIN, USVIKA R, RIFALDI M, et al. Energy and exergy analysis of Kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation[J]. Journal of Mechanical Science and Technology, 2009, 23(7):1871-1876.
|
[28] |
SINGH O K, KAUSHIK S C. Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant[J]. Applied Thermal Engineering, 2013, 51(1/2):787-800.
|
[29] |
ZHANG Z, GUO Z W, CHEN Y P, et al. Power generation and heating performances of integrated system of ammonia-water Kalina-Rankine cycle[J]. Energy Conversion and Management, 2015, 92:517-522.
|