CIESC Journal ›› 2017, Vol. 68 ›› Issue (2): 552-559.DOI: 10.11949/j.issn.0438-1157.20160901
Previous Articles Next Articles
LIU Yu1, JIANG Hao2, LI Chunzhong2, LIU Honglai3
Received:
2016-07-01
Revised:
2016-11-29
Online:
2017-02-05
Published:
2017-02-05
Supported by:
supported by the National Natural Science Foundation of China (91334203, 21506051), the Shanghai Pujiang Program (15PJ1401400), the Fundamental Research Funds for the Central Universities of China (222201414008) and the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-15C05).
刘宇1, 江浩2, 李春忠2, 刘洪来3
通讯作者:
刘洪来
基金资助:
国家自然科学基金项目(91334203,21506051);上海市浦江人才计划项目(15PJ1401400);中央高校基本科研业务费项目(222201414008);化学工程联合国家重点实验室开放课题项目(SKL-ChE-15C05)。
CLC Number:
LIU Yu, JIANG Hao, LI Chunzhong, LIU Honglai. Construction of interaction model for lithium ion in super capacitors and lithium battery[J]. CIESC Journal, 2017, 68(2): 552-559.
刘宇, 江浩, 李春忠, 刘洪来. 超级电容器及锂电池中锂离子相互作用模型的构建[J]. 化工学报, 2017, 68(2): 552-559.
[1] | FUTABA D N, HATA K, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12):987-994. |
[2] | LV P, FENG Y Y, LI Y, et al. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors[J]. Journal of Power Sources, 2012, 220:160-168. |
[3] | NOKED M, OKASHY S, ZIMRIN T, et al. Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(7):1568-1571. |
[4] | JIANG J, SHI W, SONG S, et al. Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures[J]. Journal of Power Sources, 2014, 248:1281-1289. |
[5] | KUMAR R, KIM H J, PARK S, et al. Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities[J]. Carbon, 2014, 79:192-202. |
[6] | NISHIMOTO Y, YOKOGAWA D, YOSHIKAWA H, et al. Super-reduced polyoxometalates:excellent molecular cluster battery components and semipermeable molecular capacitors[J]. Journal of the American Chemical Society, 2014, 136(25):9042-9052. |
[7] | TANG W, PENG L, YUAN C, et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application[J]. Synthetic Metals, 2015, 202:140-146. |
[8] | ZOU J Y, ZHANG L, SONG J Y. Development of the 40 V hybrid super-capacitor unit[J]. IEEE Transactions on Magnetics, 2005, 41(1):294-298. |
[9] | BORENSTIEN A, NOKED M, OKASHY S, et al. Composite carbon nano-tubes (CNT)/activated carbon electrodes for non-aqueous super capacitors using organic electrolyte solutions[J]. Journal of the Electrochemical Society, 2013, 160(8):A1282-A1285. |
[10] | DE D, KLUMPNER C, PATEL C, et al. Modelling and control of a multi-stage interleaved DC-DC converter with coupled inductors for super-capacitor energy storage system[J]. IET Power Electronics, 2013, 6(7):1360-1375. |
[11] | WANG J D, PENG T J, SUN H J, et al. Effect of the hydrothermal reaction temperature on three-dimensional reduced graphene oxide's appearance, structure and super capacitor performance[J]. Acta Physico-Chimica Sinica, 2014, 30(11):2077-2084. |
[12] | CAO X H, SHI Y M, SHI W H, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries[J]. Small, 2013, 9(20):3433-3438. |
[13] | WANG H W, ZHANG Y, ANG H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18):3082-3093. |
[14] | JIANG H, ZHANG H X, FU Y, et al. Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids:the role of silver in boosting Li ion storage[J]. ACS Nano, 2016, 10(1):1648-1654. |
[15] | JENSEN K P, JORGENSEN W L. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions[J]. Journal of Chemical Theory and Computation, 2006, 2(6):1499-1509. |
[16] | GANCHEFF J S, KREMER C, VENTURA O N. Interaction of simple ions with water:theoretical models for the study of ion hydration[J]. Journal of Chemical Education, 2009, 86(12):1403-1407. |
[17] | RIZZO R C, JORGENSEN W L. OPLS all-atom model for amines:resolution of the amine hydration problem[J]. Journal of the American Chemical Society, 1999, 121(20):4827-4836. |
[18] | KAMINSKI G A, FRIESNER R A, TIRADO-RIVES J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides[J]. Journal of Physical Chemistry B, 2001, 105(28):6474-6487. |
[19] | ZHOU L, ZHAO D Y, LOU X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries[J]. Advanced Materials, 2012, 24(6):745-748. |
[20] | MADRIA N, ARUNKUMAR T A, NAIR N G, et al. Ionic liquid electrolytes for lithium batteries:synthesis, electrochemical, and cytotoxicity studies[J]. Journal of Power Sources, 2013, 234:277-284. |
[21] | DEWAR M J S, ZOEBISCH E G, HEALY E F, et al. AM1:a new general purpose quantum mechanical molecular model[J]. Journal of the American Chemical Society, 1985, 107(13):3902-3909. |
[22] | MURPHY R B, PHILIPP D M, FRIESNER R A. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments[J]. Journal of Computational Chemistry, 2000, 21(16):1442-1457. |
[23] | TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B, 2001, 63(24):245407. |
[24] | CHIBA M, FEDOROV D G, KITAURA K. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory[J]. Journal of Computational Chemistry, 2008, 29(16):2667-2676. |
[25] | COHEN A J, MORI-SANCHEZ P, YANG W. Challenges for density functional theory[J]. Chemical Reviews, 2012, 112(1):289-320. |
[26] | JOUNG I S, CHEATHAM T E Ⅲ. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations[J]. Journal of Physical Chemistry B, 2008, 112(30):9020-9041. |
[27] | PEZESHKI S, LIN H. Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM:on-the-fly partial charge transfer between QM and MM subsystems[J]. Journal of Computational Chemistry, 2014, 35(24):1778-1788. |
[28] | HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B):B864-B871. |
[29] | KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A):A1133-A1138. |
[30] | HO G S, LIGNERES V L, CARTER E A. Introducing profess:a new program for orbital-free density functional theory calculations[J]. Computer Physics Communications, 2008, 179(11):839-854. |
[31] | FREEMAN F, HEHRE W J. An ab initio molecular orbital theory and density functional theory study of the conformational free energies of methyltetrahydro-2H-thiopyrans[J]. Journal of Molecular Structure-Theochem, 2000, 529:225-239. |
[32] | CARLING K M, CARTER E A. Orbital-free density functional theory calculations of the properties of Al, Mg and Al-Mg crystalline phases[J]. Modelling and Simulation in Materials Science and Engineering, 2003, 11(3):339-348. |
[33] | LANGRETH D C, PERDEW J P. Exchange-correlation energy of a metallic surface:wave-vector analysis. ii[J]. Physical Review B, 1982, 26(6):2810-2818. |
[34] | VOSKO S H, WILK L, NUSAIR M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations-a critical analysis[J]. Canadian Journal of Physics, 1980, 58(8):1200-1211. |
[35] | PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation-energy[J]. Physical Review B, 1992, 45(23):13244-13249. |
[36] | ALONSO J A, GIRIFALCO L A. Nonlocal approximation to exchange potential and kinetic-energy of an inhomogeneous electron-gas[J]. Physical Review B, 1978, 17(10):3735-3743. |
[37] | KERKER G P. Nonlocal-density approximation to exchange and correlation:effect on the silicon band structure[J]. Physical Review B (Condensed Matter), 1981, 24(6):3468-3473. |
[38] | CUEVAS-SAAVEDRA R, CHAKRABORTY D, RABI S, et al. Symmetric nonlocal weighted density approximations from the exchange-correlation hole of the uniform electron gas[J]. Journal of Chemical Theory and Computation, 2012, 8(11):4081-4093. |
[39] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. |
[40] | BECKE A D. Density-functional thermochemistry(Ⅲ):The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7):5648-5652. |
[41] | CHENGTEH L, WEITAO Y, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B (Condensed Matter), 1988, 37(2):785-789. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1006
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||