CIESC Journal ›› 2017, Vol. 68 ›› Issue (2): 509-518.DOI: 10.11949/j.issn.0438-1157.20160928
Previous Articles Next Articles
HUANG Yaohui1, YIN Qiuxiang1,2, ZHANG Xia1, GUO Mingxia1, WANG Chang1
Received:
2016-06-30
Revised:
2016-10-20
Online:
2017-02-05
Published:
2017-02-05
Supported by:
supported by the Tianjin Research Program of Application Foundation and Advanced Technology (the Key Program of Natural Science Foundation of Tianjin) (11JCZDJC20700).
黄耀辉1, 尹秋响1,2, 张霞1, 郭明霞1, 王昌1
通讯作者:
尹秋响
基金资助:
天津市应用基础及前沿技术研究计划项目(天津市自然科学基金重点项目)(11JCZDJC20700)。
CLC Number:
HUANG Yaohui, YIN Qiuxiang, ZHANG Xia, GUO Mingxia, WANG Chang. Synthesis and structural analysis of pharmaceutical co-crystals[J]. CIESC Journal, 2017, 68(2): 509-518.
黄耀辉, 尹秋响, 张霞, 郭明霞, 王昌. 药物共晶的合成和结构分析[J]. 化工学报, 2017, 68(2): 509-518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160928
[1] | BYRN S R, ZOGRAFI G, CHEN X M. Accelerating proof of concept for small molecule drugs using solid-state chemistry[J]. Journal of Pharmaceutical Sciences, 2010, 99(9):3665-3675. |
[2] | SCHULTHEISS N, NEWMAN A. Pharmaceutical cocrystals and their physicochemical properties[J]. Crystal Growth & Design, 2009, 9(6):2950-2967. |
[3] | MORISSETTE S L, ALMARSSON O, PETERSON M L, et al. High-throughput crystallization:polymorphs, salts, co-crystals and solvates of pharmaceutical solids[J]. Advanced Drug Delivery Reviews, 2004, 56(3):275-300. |
[4] | 马坤. 药物共晶的筛选技术及热力学研究进展[J]. 药学进展, 2010, 34(12):529-534. MA K. Progress in the research of screening technique and thermodynamics of pharmaceutical cocrystals[J]. Progress in Pharmaceutical Sciences, 2010, 34(12):529-534. |
[5] | 王义成, 冯成亮, 杨素勤, 等. 药物共晶的最新研究进展[J]. 药学进展, 2013, 37(3):120-130. WANG Y C, FENG C L, YANG S Q, et al. Recent research advances of pharmaceutical cocrystals[J]. Progress in Pharmaceutical Sciences, 2013, 37(3):120-130. |
[6] | 陈学文, 宋菊, 唐海谊, 等. 药物共晶筛选与理化性质研究进展[J]. 中国医药工业杂志, 2012, 43(8):703-708. CHEN X W, SONG J, TANG H Y, et al. Progress in screening methods and physicochemical properties of pharmaceutical co-crystals[J]. Chinese Journal of Pharmaceuticals, 2012, 43(8):703-708. |
[7] | 高缘, 祖卉, 张建军. 药物共晶研究进展[J]. 化学进展, 2010, 22(5):829-836. GAO Y, ZU H, ZHANG J J. Pharmaceutical cocrystals[J]. Progress in Chemistry, 2010, 22(5):829-836. |
[8] | CHIENG N, RADES T, AALTONEN J. An overview of recent studies on the analysis of pharmaceutical polymorphs[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(4):618-644. |
[9] | BRAGA D, MAINI L, GREPIONI F. Mechanochemical preparation of co-crystals[J]. Chemical Society Reviews, 2013, 42(18):7638-7648. |
[10] | FRISCIC T, JONES W. Recent advances in understanding the mechanism of cocrystal formation via grinding[J]. Crystal Growth & Design, 2009, 9(3):1621-1637. |
[11] | THAKURIA R, DELORI A, JONES W, et al. Pharmaceutical cocrystals and poorly soluble drugs[J]. International Journal of Pharmaceutics, 2013, 453(1):101-125. |
[12] | AITIPAMULA S, CHOW P S, TAN R B H. Polymorphism in cocrystals:a review and assessment of its significance[J]. Cryst. Eng. Comm., 2014, 16(17):3451-3465. |
[13] | BRITTAIN H G. Cocrystal systems of pharmaceutical interest:2010[J]. Crystal Growth & Design, 2012, 12(2):1046-1054. |
[14] | BRITTAIN H G. Cocrystal systems of pharmaceutical interest:2011[J]. Crystal Growth & Design, 2012, 12(11):5823-5832. |
[15] | LING A R, BAKER J L. Halogen derivatives of quinine(Ⅲ):Derivatives of quinhydrone[J]. J. Chem. Soc. Trans., 1893, 63:1314-1327. |
[16] | AAKEROY C B, SALMON D J. Building co-crystals with molecular sense and supermolecular sensibility[J]. Cryst. Eng. Comm., 2005, 7:439-448. |
[17] | RODRIGUEZ H N. Cocrystals:molecular design of pharmaceutical materials[J]. Molecular Pharmaceutics, 2007, 4(3):299-300. |
[18] | ZHANG X, SUN F, ZHANG T, et al. Three pharmaceuticals cocrystals of adefovir:syntheses, structures and dissolution study[J]. Journal of Molecular Structure, 2015, 1100:395-400. |
[19] | ZHANG X, TIAN Y, JIA J, et al. Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone[J]. Journal of Molecular Structure, 2016, 1108:560-566. |
[20] | SOWA M, SLEPOKURA K, MATCZAL-JON E. Solid-state characterization and solubility of a genistein-caffeine cocrystal[J]. Journal of Molecular Structure, 2014, 1076:80-88. |
[21] | XU L L, CHEN J M, YAN Y, et al. Improving the solubility of 6-mercaptopurine via cocrystals and salts[J]. Crystal Growth & Design, 2012, 12(12):6004-6011. |
[22] | MCNAMARA D P, CHILDS S L, GIORDANO J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API[J]. Pharmaceutical Research, 2006, 23(8):1888-1897. |
[23] | CHEN Y, LI L, YAO J, et al. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal[J]. Crystal Growth & Design, 2016, 16(5):2923-2930. |
[24] | SHAYANFAR A, ZEYNALI K A, JOUYBAN A. Solubility and dissolution rate of a carbamazepine-cinnamic acid cocrystal[J]. Journal of Molecular Liquids, 2013, 187:171-176. |
[25] | DUGGIRALA N K, SMITH A J, WOJTAS L. Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose[J]. Crystal Growth & Design, 2014, 14(11):6135-6142. |
[26] | WANG L, WEN X N, LI P, et al. 2:15-Fluorocytosine-acesulfame CAB cocrystal and 1:15-fluorocytosine-acesulfame salt hydrate with enhanced stability against hydration[J]. Cryst. Eng. Comm., 2014, 16(36):8537-8545. |
[27] | IMCHALEE R, CHAROENCHAITRAKOOL M. Gas anti-solvent processing of a new sulfamethoxazole-L-malic acid cocrystal[J]. Journal of Industrial and Engineering Chemistry, 2015, 25:12-15. |
[28] | ZHOU Z, LI W, SUN W, et al. Resveratrol cocrystals with enhanced solubility and tabletability[J]. International Journal of Pharmaceutics, 2016, 509(1/2):391-399. |
[29] | FRAMPTON C. Cocrystal clear solutions[J]. Chemistry & Industry, 2010, (5):21-23 |
[30] | AAKEROY C B, SALMON D J, SMITH M M, et al. Cyanophenyloximes:reliable and versatile tools for hydrogen-bond directed supramolecular synthesis of cocrystals[J]. Crystal Growth & Design, 2006, 6(4):1033-1042. |
[31] | LIAO X, GAUTAM M, GRILL A, et al. Effect of position isomerism on the formation and physicochemical properties of pharmaceutical co-crystals[J]. Journal of Pharmaceutical Sciences, 2010, 99(1):246-254. |
[32] | THANIGAIMANI K, KHALIB N C, TEMEL E, et al. New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-methylbenzoic acids:syntheses, structural characterization, hirshfeld surfaces and quantum chemical investigations[J]. Journal of Molecular Structure, 2015, 1099:246-256. |
[33] | HICKEY M B, PETERSON M L, SCOPPETTUOLO L A, et al. Performance comparison of a co-crystal of carbamazepine with marketed product[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1):112-119. |
[34] | REMENAR J F, PERTERSON M L, STEPHENS P W, et al. Celecoxib:nicotinamide dissociation:using excipients to capture the cocrystal's potential[J]. Molecular Pharmaceutics, 2007, 4(3):386-400. |
[35] | ZHANG S, RASMUSON. The theophylline-oxalic acid co-crystal system:solid phases, thermodynamics and crystallization[J]. Cryst. Eng. Comm., 2012, 14(14):4644-4655. |
[36] | CHUN N H, WANG I C, LEE M J, et al. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3):854-861. |
[37] | HORNEDO N R, NEHM S J, SEEFELDT K F, et al. Reaction crystallization of pharmaceutical molecular complexes[J]. Molecular Pharmaceutics, 2006, 3(3):362-367. |
[38] | KARKI S, FRISCIC T, JONES W. Control and interconversion of cocrystal stoichiometry in grinding:stepwise mechanism for the formation of a hydrogen-bonded cocrystal[J]. Cryst. Eng. Comm., 2009, 11(3):470-481. |
[39] | KULLA H, GREISER S, BENEMANN S, et al. In situ investigation of a self-accelerated cocrystal formation by grinding pyrazinamide with oxalic acid[J]. Molecules, 2016, 21(7):917-925. |
[40] | YAMAMOTO K, TSUTSUMI S, LKEDA Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals[J]. International Journal of Pharmaceutics, 2012, 437(1/2):162-171. |
[41] | LIN H L, WU T K, LIN S Y. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach[J]. Thermochimica Acta, 2014, 575:313-321. |
[42] | NGUYEN K L, FRISCIC T, DAY G M, et al. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation[J]. Nature Materials, 2007, 6:206-209. |
[43] | FRISCIC T, FABIAN L, BURLEY J C, et al. Exploring the relationship between cocrystal stability and symmetry:is Wallach's rule applicable to multi-component solids?[J]. Chem. Comm., 2008, (14):1644-1646. |
[44] | TRASK A V, MOTHERWELL W D, JONES W. Solvent-drop grinding:green polymorph control of cocrystallisation[J]. Chem. Comm., 2004, (7):890-891. |
[45] | LI S, CHEN J M, LU T B, et al. Synthon polymorphs of 1:1 co-crystal of 5-fluorouracil and 4-hydroxybenzoic acid:their relative stability and solvent polarity dependence of grinding outcomes[J]. Cryst. Eng. Comm., 2014, 16(28):6450-6458. |
[46] | FULIAS A, SOICA C, LEDETI I, et al. Characterization of pharmaceutical acetylsalicylic acid-theophylline cocrystal obtained by slurry method under microwave irradiation[J]. Revista De Chimie, 2014, 65(11):1281-1284. |
[47] | HASA D, RAUBER G S, VOINOVICH D, et al. Cocrystal formation through mechanochemistry:from neat and liquid-assisted grinding to polymer-assisted grinding[J]. Angewandte Chemie, 2015, 54(25):7371-7375. |
[48] | STAHLY G P. Diversity in single-and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals[J]. Crystal Growth & Design, 2007, 7(6):1007-1026. |
[49] | PADRELA L, RODRIGUES M A, TIAGO J, et al. Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents[J]. Crystal Growth & Design, 2015, 15(7):3175-3181. |
[50] | NEUROHR C, ERRIGUIBLE A, LAUGIER S, et al. Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide[J]. Chemical Engineering Journal, 2016, 303:238-251. |
[51] | BERRY D J, SEATON C C, CLEGG W, et al. Applying hot-stage microscopy to co-crystal screening:a study of nicotinamide with seven active pharmaceutical ingredients[J]. Crystal Growth & Design, 2008, 8(5):1697-1712. |
[52] | PATIL S, KULKARNI J, MAHADIK K. Exploring the potential of electrospray technology in cocrystal synthesis[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8409-8414. |
[53] | CHILDS S L, STAHLY G P, PARK A. The salt-cocrystal continuum: the influence of crystal structure on ionization state[J]. Molecular Pharmaceutics, 2007, 4(3):323-338. |
[54] | TAYLOR R, KENNARD O. Comparison of X-ray and neutron diffraction results for the NH…O=C hydrogen bond[J]. Acta Crystallographica Section B, 1983, 39:133-138. |
[55] | LEE K S, KIM K J, ULRICH J. In situ monitoring of cocrystallization of salicylic acid-4,4'-dipyridyl in solution using Raman spectroscopy[J]. Crystal Growth & Design, 2014, 14(6):2893-2899. |
[56] | LEE N J, CHUN N H, KIM M J, et al. In situ monitoring of antisolvent cocrystallization by combining near-infrared and Raman spectroscopies[J]. Crystal Growth & Design, 2015, 15(9):4385-4393. |
[57] | SOARES F L, CARNEIRO R L. Green synthesis of ibuprofen-nicotinamide cocrystals and in-line evaluation by Raman spectroscopy[J]. Crystal Growth & Design, 2013, 13(4):1510-1517. |
[58] | ZHANG G C, LIN H L, LIN S Y. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66:162-169. |
[59] | LIN H L, ZHANG G C, LIN S Y. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC-FTIR microspectroscopy[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(1):679-687. |
[60] | SARRAGUÇA M C, PAISANA M, PINTO J, et al. Real-time monitoring of cocrystallization processes by solvent evaporation:a near infrared study[J]. European Journal of Pharmaceutical Sciences, 2016, 90:76-84. |
[61] | HEIDEN S, TROBS L, WENZEL K J, et al. Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1:1)[J]. Cryst. Eng. Comm., 2012, 14(16):5128-5129. |
[62] | JANIAK C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands[J]. Journal of the Chemical Society-Dalton Transactions, 2000, (21):3885-3896. |
[63] | MANIN A N, SUROV A O, CHURAKOV A V, et al. Crystal structures, thermal analysis, and dissolution behavior of new solid forms of the antiviral drug arbidol with dicarboxylic acids[J]. Crystals, 2015, 5(4):650-669. |
[64] | KRISHNA G R, SHI L, BAG P P, et al. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers[J]. Crystal Growth & Design, 2015, 15(4):1827-1832 |
[65] | BASAVOJU S, BOSTROM D, VELAGA S P. Indomethacinsaccharin cocrystal:design, synthesis and preliminary pharmaceutical characterization[J]. Pharmaceutical Research, 2008, 25(3):530-541. |
[66] | SANPHUI P, MISHRA M K, RAMAMURTY U, et al. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals:voriconazole as a case study[J]. Molecular Pharmaceutics, 2015, 12(3):889-897. |
[67] | HIENDRAWAN S, VERIANSYAH B, WIDJOJOKUSUMO E, et al. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid[J]. International Journal of Pharmaceutics, 2016, 497(1/2):106-113. |
[68] | STAVROPOULOS K, JOHNSTON S C, ZHANG Y, et al. Cocrystalline solids of telaprevir with enhanced oral absorption[J]. Journal of Pharmaceutical Sciences, 2016, 104(10):3343-3350. |
[69] | SHETE A, MURTHY S, KORPALE S, et al. Cocrystals of itraconazole with amino acids:screening, synthesis, solid state characterization, in vitro drug release and antifungal activity[J]. Journal of Drug Delivery Science and Technology, 2015, 28:46-55. |
[70] | YAN Y, CHEN J M, LU T B. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method[J]. Cryst. Eng. Comm., 2015, 17(3):612-620. |
[71] | DING P, LIN L, LI Y, et al. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening[J]. International Journal of Pharmaceutics, 2015, 496(1):107-116. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[3] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[12] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
[13] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[14] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[15] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||