[1] |
SAITO A. Recent advances in research on cold thermal energy storage[J]. International Journal of Refrigeration, 2002, 25(2):177-189.
|
[2] |
BELLAS I, TASSOU S A. Present and future applications of ice slurries[J]. International Journal of Refrigeration, 2005, 28(1):115-121.
|
[3] |
FANG G Y, TANG F, CAO L. Dynamic characteristics of cool thermal energy storage systems-a review[J]. International Journal of Green Energy, 2016, 13(1):1-13.
|
[4] |
EGOLF P W, KAUFFELD M. From physical properties of ice slurries to industrial ice slurry applications[J]. International Journal of Refrigeration, 2005, 28(1):4-12.
|
[5] |
LI G, HWANG Y, RADERMACHER R. Review of cold storage materials for air conditioning application[J]. International Journal of Refrigeration, 2012, 35(8):2053-2077.
|
[6] |
KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8):1491-1505.
|
[7] |
WANG M J, KUSUMOTO N. Ice based storage in multifunctional buildings[J]. Heat Mass Transfer, 2001, 37(6):594-604.
|
[8] |
QUARINI J. Ice-pigging to reduce and remove fouling and to achieve clean-in-place[J]. Applied Thermal Engineering, 2002, 22(7):747-753.
|
[9] |
YOUSSEF Z, DELAHAYE A, HUANG L, et al. State of the art on phase change material slurries[J]. Energy Conversion and Management, 2013, 65(1):120-132.
|
[10] |
AYEL V, LOTTIN O, PEERHOSSAINI H. Rheology, flow behavior and heat transfer of ice slurries:a review of the state of the art[J]. International Journal of Refrigeration, 2003, 26(1):51-59.
|
[11] |
DORON P, GRANICA D, BARNEA D. Slurry flow in horizontal pipes-experimental and modeling[J]. Multiphase Flow, 1987, 13(4):535-547.
|
[12] |
DORON P, BARNEA D. A three-layer model for solid-liquid flow in horizontal pipes[J]. Multiphase Flow, 1993, 19(6):1029-1043.
|
[13] |
EGOLF P W, KITANOVSKI A, ATA-CAESAR D, et al. Thermodynamics and heat transfer of ice slurries[J]. International Journal of Refrigeration, 2005, 28(1):51-59.
|
[14] |
MIKA L. Ice slurry flow in a poppet-type flow control valve[J]. Experimental Thermal and Fluid Science, 2013, 45(1):128-135.
|
[15] |
DELAHAYE A, FOURNAISON L, GUILPART J. Characterisation of ice and THF hydrate slurry crystal size distribution by microscopic observation method[J]. International Journal of Refrigeration, 2010, 33(8):1639-1647.
|
[16] |
刘志强, 王肖肖, 王小倩, 等. 冰浆存储过程中冰晶粒径演化的影响因素研究[J]. 热科学与技术, 2013, 12(4):307-312. LIU Z Q, WANG X X, WANG X Q, et al. Analysis of influence factors of ice slurry in storage[J]. Journal of Thermal Science and Technology, 2013, 12(4):307-312.
|
[17] |
赵腾磊, 刘志强, 徐爱祥, 等. 冰浆存储过程中冰晶粒径演化数值模拟[J]. 中南大学学报, 2014, 45(10):3651-3656. ZHAO T L, LIU Z Q, XU A X, et al. Numerical simulation of evolution of ice crystal size distribution during storage[J]. Journal of Central South University, 2014, 45(10):3651-3656.
|
[18] |
徐爱祥, 刘志强, 赵腾磊, 等. 冰浆存储过程中冰晶粒径动力学演化影响因素[J]. 中南大学学报, 2015, 46(8):3138-3144. XU A X, LIU Z Q, ZHAO T L, et al. Factors influencing dynamics evolution of ice crystals during ice slurry storage[J]. Journal of Central South University, 2015, 46(8):3138-3144.
|
[19] |
PENG Z B, YUAN Z L, LIANG K F, et al. Ice slurry formation in a cocurrent liquid-liquid flow[J]. Chinese Journal of Chemical Engineering, 2008, 16(4):552-557.
|
[20] |
PRONK P, INFANTE FERREIRA C A, WITKAMP G J. A dynamic model of Ostwald ripening in ice suspensions[J]. Journal of Crystal Growth, 2005, 275(1/2):1355-1361.
|
[21] |
PRONK P, HANSEN T M, INFANTE FERREIRA C A, et al. Time-dependent behavior of different ice slurries during storage[J]. International Journal of Refrigeration, 2005, 28(1):27-36.
|
[22] |
INADA T, MODAK P R. Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries[J]. Chemical Engineering Science, 2006, 61(10):3149-3158.
|
[23] |
YOSHI K T, AKIO S, SEIJI O. A study of supercooling-phenomenon and freezing probability of water inside horizontal cylinders[J]. International Journal of Refrigeration, 2004, 27(3):242-247.
|
[24] |
FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage:materials and applications[J]. Energy Conversion and Management, 2004, 45(9):1597-1615.
|
[25] |
HE Q B, WANG S F, TONG M W, et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage[J]. Energy Conversion and Management, 2012, 64:199-205.
|
[26] |
LEE J H, LEE S H, CHOI C J, et al. A review of thermal conductivity data, mechanisms and models for nanofluids[J]. International Journal of Micro-Nano Scale Transport, 2010, 1(4):269-322.
|
[27] |
XIE H Q. Thermal conductivity enhancements of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002, 91(7):4568-4572.
|
[28] |
WANG X, XU X F, CHOI S U S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4):474-480.
|
[29] |
CLAIN P, NDOYE F T, DELAHAYE A, et al. Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application[J]. International Journal of Refrigeration, 2015, 50:19-31.
|
[30] |
刘海红, 李玉星, 王武昌, 等. 四氢呋喃水合物和一氟二氯乙烷水合物颗粒聚结特性[J]. 化工学报, 2014, 65(6):2049-2055. LIU H H, LI Y X, WANG W C, et al. Agglomeration characterization of THF and HCFC-141b hydrate particle[J]. CIESC Journal, 2014, 65(6):2049-2055.
|