CIESC Journal ›› 2017, Vol. 68 ›› Issue (2): 496-508.DOI: 10.11949/j.issn.0438-1157.20161109
Previous Articles Next Articles
TANG Zhigang1, HE Zhimin1, Ebrahim1, GUO Dong1, ZHAO Zhijun1, XING Xiao1, WEN Yanming2, WANG Dengfu3, JIANG Aiguo3, KANG Chunqing3, LIU Jingxue3
Received:
2016-08-05
Revised:
2016-12-05
Online:
2017-02-05
Published:
2017-02-05
汤志刚1, 贺志敏1, Ebrahim1, 郭栋1, 赵志军1, 邢潇1, 温燕明2, 王登富3, 姜爱国3, 康春清3, 刘敬学3
通讯作者:
汤志刚(1970-),男,博士,副教授。
CLC Number:
TANG Zhigang, HE Zhimin, Ebrahim, GUO Dong, ZHAO Zhijun, XING Xiao, WEN Yanming, WANG Dengfu, JIANG Aiguo, KANG Chunqing, LIU Jingxue. Desulfurization and denitration integrative process for coke oven flue gas using dual ammonia solution: from laboratory to industrial test[J]. CIESC Journal, 2017, 68(2): 496-508.
汤志刚, 贺志敏, Ebrahim, 郭栋, 赵志军, 邢潇, 温燕明, 王登富, 姜爱国, 康春清, 刘敬学. 焦炉烟道气双氨法一体化脱硫脱硝:从实验室到工业实验[J]. 化工学报, 2017, 68(2): 496-508.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161109
[1] | 贾峰. 中国开始实施"史上最严"新环保法[J]. 世界环境, 2016, (1):31-33. JIA F. China enforces "most stringent" new environmental law in its history[J]. World Environment, 2016, (1):31-33. |
[2] | 环境保护部. 炼焦化学工业污染物排放标准:GB 16171-2012[S]. 北京:中国标准出版社, 2012. Ministry of Environmental Protection. Coking chemical industry pollutant emission standards:GB 16171-2012[S]. Beijing:Standards Press of China, 2012. |
[3] | 环境保护部. 炼焦化学工业污染物排放标准:GB 16171-1996[S]. 北京:中国标准出版社, 1996. Ministry of Environmental Protection. Coking chemical industry pollutant emission standards:GB 16171-1996[S]. Beijing:Standards Press of China, 1996. |
[4] | 曾小青. 烟气脱硫专利技术综述[J]. 山东工业技术, 2016, (13):8. ZENG X Q. Review on patent technology of flue gas desulfurization[J]. Shandong Industrial Technology, 2016, (13):8. |
[5] | 梁柱. EDV法烟气脱硫技术的工业应用[J]. 石化技术与应用, 2015, 33(6):522-523. LIANG Z. An industrial application of EDV desulfurization technology of fluid catalytic cracking flue gas[J]. Petrochemical Technology & Application, 2015, 33(6):522-523. |
[6] | 范影, 焦岩, 樊宁安, 等. WGS湿法烟气脱硫技术应用研究[J]. 现代化工, 2015, l44(11):2683-2686. FAN Y, JIAO Y, FAN N A, et al. Research progress of WGS wet flue gas desulfurization technology[J]. Modern Chemical Industry, 2015, l44(11):2683-2686. |
[7] | 赵亮, 林延东, 任松岭, 等. 高效动力波洗涤-喷淋塔湿法脱硫技术在催化装置的应用[J]. 石化技术, 2015, (12):50. ZHAO L, LIN Y D, REN S L, et al. Application of efficient dynawave scrubber-spary tower[J]. Petrochemical Industry Technology, 2015, (12):50. |
[8] | SAKUMA A, KADOTA F, IWASAKI M. Feature and operating experience of magnesium hydroxide process for flue gas desulfurization[J]. Mitsubishi Heavy Industries Technical Report, 1987, 24(6):578-582. |
[9] | 何翼云. 氨法烟气脱硫技术及其进展[J]. 化工环保, 2012, l32(2):141-144. HE Y Y. Flue gas ammonia desulfurization technology and its development[J]. Environmental Protection of Chemical Industry, 2012, l32(2):141-144. |
[10] | 宋立华. 火力发电厂氨法烟气脱硫技术研究[D]. 天津:天津大学, 2008:21-22. SONG L H. Study on ammonia flue gas desulphurization technology of thermal power plant[D]. Tianjin:Tianjin University, 2008:21-22. |
[11] | 崔慧姝. ALSTOM阿尔斯通海水烟气脱硫技术秦皇岛电厂1×300MW机组[C]//全国火电200MW级机组技术协作会第24届年会论文集. 重庆, 2006. CUI H S. ALSTOM seawater flue gas desulfurization technology Qinhuangdao Power Plant 1×300MW unit[C]//Proceedings of the 24th Annual Meeting of Technical Cooperation Conference of National Thermal Power 200MW Unit. Chongqing, 2006. |
[12] | 吴基荣, 李晋睿. 可再生无机缓冲溶液烟气脱硫技术概述[J]. 硫酸工业, 2009, (3):13-16. WU J R, LI J R. Overview of regenerable inorganic buffer solution FGD technology[J]. Sulphuric Acid Industry, 2009, (3):13-16. |
[13] | 王召启, 黄卫华, 郭智生. Cansolv烟气脱硫-制酸技术在燃煤电厂烟气治理中的应用[J]. 硫酸工业, 2012, (4):1-4. WANG Z Q, HUANG W H, GUO Z S. Application of Gansolv FGD-sulphuric acid production technology in treatment of coal-fired power plant flue gas[J]. Sulphuric Acid Industry, 2012, (4):1-4. |
[14] | 曹俊斌, 陈建国, 张益, 等. 循环流化床烟气脱硫技术概述[C]//二氧化硫污染治理技术汇编--2001年全国烟气脱硫成套技术工程应用实例分析及学术研讨会论文集. 成都, 2001. CAO J B, CHEN J G, ZHANG Y, et al. Overview of circulating fluidized bed flue gas desulfurization technology[C]//National Flue Gas Desulphurization Technology Project Application Example Analysis and Academic Seminar. Chengdu, 2001. |
[15] | 蒋思国. 石灰石-石膏湿法烟气脱硫技术及其应用[D]. 重庆:西南交通大学, 2007:2-4. JIANG S G. The technology and application of flue gas desulfurization based on wet limestone-gypsum[D]. Chongqing:Southwest Jiaotong University, 2007:2-4. |
[16] | 宫国卓, 杨文芬, 陈倬为. 循环流化床技术在烟气脱硫中的应用[J]. 煤炭加工与综合利用, 2011, (1):54-59. GONG G Z, YANG W F, CHEN Z W. Application of circulating fluidized bed technology in flue gas desulfurization[J]. Coal Processing & Comprehensive Utilization, 2011, (1):54-59. |
[17] | KHINAST J, BRUNNER C, AICHINGER G, et al. Reaction during low temperature dry flue gas desulfurization[C]//15th SO2 Control Symposium. United States, 1995. |
[18] | 顾兵, 何申富, 姜创业. SDA脱硫工艺在烧结烟气脱硫中的应用[J]. 环境工程, 2013, 31(2):53-58. GU B, HE S F, JIANG C Y. Application of spray drying absorption (SDA) in desulphurization of sintering flue gas[J]. Environmental Engineering, 2013, 31(2):53-58. |
[19] | 贾东坡, 王明毅, 宋魏鑫, 等. 循环流化床锅炉尾部增湿活化深度脱硫工艺研究[J]. 电站系统工程, 2014, 30(5):41-44. JIA D P, WANG M Y, SONG W X, et al. Research on deep desulfurization process of CFB boiler tail humidification and activation[J]. Power System Engineering, 2014, 30(5):41-44. |
[20] | TAO M, JIN B S, ZHONG W Q, et al. Modeling and experimental study on multi-level humidifying of the underfeed circulating spouted bed for flue gas desulfurization[J]. Powder Technology, 2010, 198:93-100. |
[21] | 柳龙. 烧结烟气NID半干法脱硫实验研究[D]. 武汉:武汉科技大学, 2015:12-13. LIU L. Experimental study of semi-dry NID for sintering flue gas[D]. Wuhan:Wuhan University of Science and Technology, 2015:12-13. |
[22] | 崔海峰, 谢峻林, 李凤祥, 等. SCR烟气脱硝技术的研究与应用[J]. 硅酸盐通报, 2016, 35(3):805-809. CUI H F, XIE J L, LI F X, et al. Research and application of SCR flue gas denitrification technology[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3):805-809. |
[23] | PARK E, CHIN S, JEONG J, et al. Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation:effects of Mn precursor on the surface Mn species[J]. Microporous and Mesoporous Materials, 2012, 163(7):96-101. |
[24] | 吴宪, 齐庆杰, 刘新, 等. SNCR技术水泥脱硝氨水脱硝反应动力学机理分析[J]. 化学工程, 2016, 44(6):13-17. WU X, QI Q J, LIU X, et al. Mechanism analysis on ammonia denitration reaction kinetics of cement denitration of SNCR[J]. Chemical Engineering, 2016, 44(6):13-17. |
[25] | 张甲. 等离子体技术在燃煤烟气脱硝脱硫中的应用[J]. 广东化工, 2014, 41(21):170-174. ZHANG J. Plasma technology in the application of coal-fired flue gas denitration desulfurization[J]. Guangdong Chemical Industry, 2014, 41(21):170-174. |
[26] | 姚刚, 黄广宇. 烟气脱硝活性炭的研究进展[J]. 化工时刊, 2014, 28(8):42-46. YAO G, HUANG G Y. Research development of flue gas denitrification activated carbon[J]. Chemical Industry Times, 2014, 28(8):42-46. |
[27] | 张金龙, 辛志玲, 张大全. 湿法烟气脱硝技术研究进展[J]. 上海电力学院学报, 2010, 26(2):151-155. ZHANG J L, XIN Z L, ZHANG D Q. Research progress of wet flue gas denitrification technology[J]. Journal of Shanghai University of Electric Power, 2010, 26(2):151-155. |
[28] | 林杉帆, 杨岚, 张博浩, 等. 液相氧化吸收法同时脱硫脱硝技术的研究进展[J]. 煤化工, 2015, 43(5):24-27. LIN S F, YANG L, ZHANG B H, et al. Analysis of the industrial operation on the preparation of coal water slurry with methanol factory wastewater[J]. Coal Chemical Industry, 2010, 26(2):151-155. |
[29] | 刘盛余, 徐圆圆, 曲兵. 湿法脱除烟气中NO的研究现状[C]//成都市科技年会分会场--世界现代田园城市空气环境污染防治学术交流会论文集. 成都, 2010. LIU S Y, XU Y Y, QU B. Research status of NO in flue gas by wet process[C]//Proceedings of the International Symposium on Air Environmental Pollution Prevention and Control in the World Modern Garden City. Chengdu, 2010. |
[30] | 张顾, 王世杰, 李富智, 等. 氨-Fe(Ⅱ)EDTA法同步脱硫脱硝中试研究[J]. 环境工程学报, 2015, 9(12):5939-5944. ZHANG G, WANG S J, LI F Z, et al. Pilot-scale experimental study on simultaneous removal of SO2 and NO by ammonia-Fe(Ⅱ) EDTA absorption[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):5939-5944. |
[31] | 李小旭. 生物法同时脱除工业废气中SO2和NOx的初步研究[D]. 天津:天津大学, 2009:15-17. LI X X. Preliminary study on simultaneous removal of SO2 and NOx from flue gas by microorganism[D]. Tianjin:Tianjin University, 2009:15-17. |
[32] | 刘辰, 宋宝华, 李玲密, 等. 等离子体法脱硫脱硝一体化试验研究[J]. 环境工程, 2014, 32(S1):597-599. LIU C, SONG B H, LI L M, et al. The study on integrated desulfurization & denitration by plasma technology[J]. Environmental Engineering, 2014, 32(S1):597-599. |
[33] | MASOMBOON N, RATANATAMSKUL C, LU M C. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process[J]. Environmental Science & Technology, 2009, 43(2):8629-8634. |
[34] | 袁媛, 赵永椿, 张军营, 等. TiO2-硅酸铝纤维纳米复合材料光催化脱硫脱硝脱汞的实验研究[J]. 中国电机工程学报, 2011, 31(11):79-85. YUAN Y, ZHAO Y C, ZHANG J Y, et al. Study on photocatalytic experiments of desulfurization, denitrification and mercury removal using a TiO2-aluminum silicate fiber nanocomposite[J]. Proceedings of the CSEE, 2011, 31(11):79-85. |
[35] | 王禹. 络合吸收法烟气同时脱硫脱硝[J]. 科技视界, 2016, (3):183. WANG Y. Simultaneous desulfurization and denitrification of flue gas by complexation absorption method[J]. Science &Technology Vision, 2016, (3):183. |
[36] | MOCHIDA I, KORAI Y, SHIRAHAMA M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000, 38(2):227-239. |
[37] | 郭少鹏. 湿式氨法烟气脱硫及结合臭氧氧化实现同时脱硫脱硝的研究[D]. 上海:华东理工大学, 2015:4-14. GUO S P. Research on ammonia-based wet flue gas desulfurization and imultaneous desulfurization and denitrification combined with ozone oxidation[D]. Shanghai:East University of Science and Technology, 2015:4-14. |
[38] | 陈梅倩, 何伯述, 陈广华, 等. 氨法脱硫反应特性的化学动力学分析[J]. 环境科学学报, 2005, 25(7):886-889. CHEN M Q, HE B S, CHEN G H, et al. Chemical kinetics based analyses on SO2 removal reactions by ammonia scrubbing[J]. Acta Scientiae Circumstantiae, 2005, 25(7):886-889. |
[39] | SHALE C C, SIMPSON D G, LEWIS P S. Removal of sulfur and nitrogen oxides from stack gasses by ammonia[J]. Chem. Eng. Prog. Symp. Ser., 1971, 67(115):52-57. |
[40] | 杨业, 徐超群, 朱燕群, 等. 臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝[J]. 化工学报, 2016, 67(5):2041-2047. YANG Y, XU C Q, ZHU Y Q, et al. Simultaneous removal of SO2 and NOx by combination of ozone oxidation and Na2S2O3 solution spray[J]. CIESC Journal, 2016, 67(5):2041-2047. |
[41] | SKALSKA K, MILLER J S, WILK M, et al. Nitrogen oxides ozonation as a method for NOx emission abatement[J]. Ozone:Science & Engineering, 2012, 34(4):252-258. |
[42] | SKALSKA K, MILLER J S, LEDAKOWICZ S. Kinetics of nitric oxide oxidation[J]. Chemical Papers, 2010, 64(2):269-272. |
[43] | 赵南. 臭氧氧化结合湿法同时脱硫脱硝工艺及吸收添加剂研究[D]. 杭州:浙江大学, 2015:20-22. ZHAO N. Experimental study on simultaneous wet absorption of SO2 and NOx combined with ozone oxidation and investigation on absorption additives[D]. Hangzhou:Zhejiang University, 2015:20-22. |
[44] | 张明慧, 马强, 徐超群, 等. 臭氧氧化结合湿法喷淋对玻璃窑炉烟气同时脱硫脱硝实验研究[J]. 燃料化学学报, 2015, 43(1):89-93. ZHANG M H, MA Q, XU C Q, et al. Simultaneous removal of NOx and SO2 from glass furnace flue gas by ozone oxidation and spray tower[J]. Journal of Fuel Chemistry and Technology, 2015, 43(1):89-93. |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[3] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
[4] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[5] | Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect [J]. CIESC Journal, 2022, 73(5): 1847-1862. |
[6] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[7] | Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jinzhu WANG. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst [J]. CIESC Journal, 2022, 73(10): 4472-4483. |
[8] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[9] | Yan ZHAO, Xiuping LI, Rongxiang ZHAO. Highly efficient oxidative desulfurization with titanium sulfate as catalyst in phenol based deep eutectic solvent [J]. CIESC Journal, 2021, 72(8): 4391-4400. |
[10] | YANG Lin, MENG Xiaomi, YAO Lu, LAI Yuguo, JIANG Wenju. Combined low-temperature flue gas denitrification and desulfurization over the natural mineral blending modified activated coke [J]. CIESC Journal, 2021, 72(4): 2241-2248. |
[11] | YANG Shi, CAI Yang, LI Changping, LI Xuehui. Preparation of phosphotungstic acid loaded Zr-based metal-organic framework PTA@MOF-808 and its adsorption desulfurization performance [J]. CIESC Journal, 2021, 72(3): 1722-1731. |
[12] | LI Zhendong, YANG Minbo, FENG Xiao, WANG Yufei. Simulation and retrofit of desulfurization system in refinery [J]. CIESC Journal, 2021, 72(3): 1473-1479. |
[13] | YU Tao, WANG Yundong, LIU Zuohua, MA Jianxiu, JING Yu. Research progress of hydrogen sulfide deep adsorption materials [J]. CIESC Journal, 2021, 72(2): 748-760. |
[14] | QING Mengxia, ZHANG Xin, LIU Liang, ZHANG Wei, WANG Lele, SU Sheng, KONG Fanhai, XIANG Jun. Study on deposition and decomposition characteristics of ammonium bisulfate/ammonium sulfate as by-product of denitration in coal-fired flue gas [J]. CIESC Journal, 2021, 72(2): 1132-1141. |
[15] | Cheng CHEN, Xin CHEN, Feng XU, Bin WU, Yuanyuan LI, Gui LU. Matter-energy-water coupling mechanism and optimization for zero discharge of desulfurization wastewater from coal-fired units [J]. CIESC Journal, 2021, 72(11): 5800-5809. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||