[1] |
华泽钊, 任禾盛. 低温生物医学[M]. 北京:科学出版社,1994. HUA Z Z, REN H S. Cryobiomedical Technology[M]. Beijing:Science Press, 1994.
|
[2] |
BROCKBANK K G, SONG Y C. Morphological analyses of ice-free and frozen cryopreserved heart valve explants[J]. Journal of Heart Valve Dis. 2004, 13:297-301.
|
[3] |
WU J, GE X, FAHY G M. Ultra rapid nonsuture mated cuff technique for renal transplantation in rabbits[J]. Microsurgery, 2003, 23:1-5.
|
[4] |
FAHY G M, MACFARLANE D R, ANGELL C A, et al. Vitrification as an approach to cryopreservation[J]. Cryobiology, 1984, 21(4):407-426.
|
[5] |
ANGER J T, GILBERT B R, GOLDSTEIN M, et al. Cryopreservation of sperm:indications, methods and results[J]. Journal of Urology, 2003, 170(4):1079-1084.
|
[6] |
POTDAR N, GELBAYA T A, NARDO L G, et al. Oocyte vitrification in the 21st century and post-warming fertility outcomes:a systematic review and meta-analysis[J]. Reproductive BioMedicine Online, 2014, 29(2):159-176.
|
[7] |
LU X L, YU J, ZHANG G, et al. Effects of varying tissue sizes on the efficiency of baboon ovarian tissue vitrification[J]. Cryobiology, 2014, 69(1):79-83.
|
[8] |
STEIF P S, PALASTRO M C, RABIN Y, et al. Analysis of the effect of partial vitrification on stress development in cryopreserved blood vessels[J]. Medical Engineering & Physics, 2007, 29(6):661-670.
|
[9] |
STEIF P S, NODAY D A, RABIN Y, et al. Can thermal expansion differences between cryopreserved tissue and cryoprotective agents alone cause cracking[J]. CryoLetters, 2009, 30(6):414-421.
|
[10] |
STEIF P S, PALASTRO M C, RABIN Y, et al. The effect of temperature gradients on stress development during cryopreservation via vitrification[J]. Cell Preservation Technology, 2007, 5(2):104-115.
|
[11] |
EISENBERG D P, STEIF P S, RABIN Y, et al. On the effects of thermal history on the development and relaxation of thermo-mechanical stress in cryopreservation[J]. Cryogenics, 2014, 64:86-94.
|
[12] |
ZHANG A L, CHENG S X, GAO D Y, et al. Thermal stress study of two different artery cryopreservation methods[J]. Cryoletters, 2005, 26(2):113-120.
|
[13] |
ZHAO G, LIU Z F, ZHANG A L, et al. Theoretical analyses of thermal stress of blood vessel during cryopreservation[J]. CryoLetters, 2005, 26(4):239-250.
|
[14] |
SONG Y C, KHIRABADI B S, LIGHTFOOT F, et al. Vitreous cryopreservation maintains the function of vascular grafts[J]. Nature Biotechnology, 2000, 18(3):296-299.
|
[15] |
JIN B, KLEINHANS F W, MAZUR P, et al. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse[J]. Cryobiology, 2014, 68(3):419-430.
|
[16] |
PEGG D E, WUSTEMAN M C, BOYLAN S, et al. Fractures in cryopreserved elastic arteries[J]. Cryobiology, 1997, 34(2):183-192.
|
[17] |
WUSTEMAN M, ROBINSON M, PEGG D, et al. Vitrification of large tissues with dielectric warming:biological problems and some approaches to their solution[J]. Cryobiology, 2004, 48(2):179-189.
|
[18] |
HAN X, GAO D Y, LUO D, et al. Numerical simulation of the microwave rewarming process of cryopreserved organs[J]. Microwave & Optical Technology Letters, 2005, 46(3):201-205.
|
[19] |
EVANS S. Electromagnetic rewarming:the effect of CPA concentration and radio source frequency on uniformity and efficiency of heating[J]. Cryobiology, 2000, 40(2):126-138.
|
[20] |
LUO D, YU C, HE L, et al. Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials[J]. Cryobiology, 2006, 53(2):288-293.
|
[21] |
WANG T, ZHAO G, LIANG X M, et al. Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues[J].Cryobiology, 2014, 68(2):234-243.
|
[22] |
ETHERIDGE M L Y, ROTT L, CHOI J H, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials[J]. Technology, 2014, 2(3):229-242.
|
[23] |
PRADHAN P, SAMANTA G G. Comparative evaluation of heating ability and biocompatibility of different ferrite based magnetic fluids for hyperthermia application[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2007, 81(1):12-22.
|
[24] |
HODGE I M. Enthalpy relaxation of amorphous materials[J]. Non-Cryst. Solids, 1994, 169:211-266.
|
[25] |
胡桐记, 高才, 周国燕, 等. 保护剂溶液水合和玻璃化性质的DSC研究[J]. 上海理工大学学报, 2005, 27(5):381-384. HU T J, GAO C, ZHOU G Y, et al. Hydration and glass transition properties of polyalcohols aqueous solution examined with DSC[J]. Journal of University of Shanghai for Science and Technology, 2005, 27(5):381-384.
|
[26] |
BOUTRON P, MEHL P. Theoretical prediction of devitrification tendency:determination of critical warming rates without using finite expansions[J]. Cryobiology, 1990, 27(4):359-377.
|
[27] |
MICHAEL L E, XU Y, LEONI R, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials[J]. Technology, 2014, 2(3):229-242.
|
[28] |
XU Y, YU H M, NIU Y Q, et al, Effects of superparamagnetic nanoparticles on nucleation and crystal growth in the vitrified Vs55 during warming[J]. Cryoletters, 2016, 37(6):448-454.
|
[29] |
MOSCOSO-LONDOÑO O, GONZALEZ J S, MURACA D, et al. Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly(acrylic acid) (PAA)-coated iron oxide nanoparticles[J]. European Polymer Journal, 2013, 49(2):279-289.
|
[30] |
吕福扣, 刘宝林, 李维杰, 等, HA纳米微粒对PEG-600低温保护剂反玻璃化结晶的影响[J]. 低温物理学报, 2012, 34(4):315-320. LÜ F K, LIU B L, LI W J, et al. Effect of HA nanoparticles on the cryoprotectant PEG-600 in the process of devitrification crystallization[J]. Chinese Journal of Low Temperature Physics, 2012, 34(4):315-320.
|
[31] |
FAHY G M, LEVY D I, ALI S E, et al. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions[J]. Cryobiology, 1987, 24(3):196-213.
|
[32] |
MACFARLANE D R, FORSYTH M, et al. Recent insights on the role of cryoprotective agents in vitrification[J]. Cryobiology, 1990, 27(4):345-358.
|