[1] |
SHIZAS I, BAGLEY D M. Experimental determination of energy content of unknown organics in municipal wastewater streams[J]. Journal of Energy Engineering, 2004, 130(2): 45-53.
|
[2] |
DEUBLEIN D, STEINHAUSER A. Biogas from Waste and Renewable Resources: an Introduction[M]. John Wiley & Sons, 2011.
|
[3] |
JENICEK P, BARTACEK J, KUTIL J, et al. Potentials and limits of anaerobic digestion of sewage sludge: energy self-sufficient municipal wastewater treatment plant?[J]. Water Science & Technology, 2012, 66(6): 1277-1281.
|
[4] |
INOUE S, SAWAYAMA S, OGI T, et al. Organic composition of liquidized sewage sludge[J]. Biomass and Bioenergy, 1996, 10(1): 37-40.
|
[5] |
GERARDI M H. The Microbiology of Anaerobic Digesters[M]. John Wiley & Sons, 2003.
|
[6] |
CAO Y, PAW?OWSKI A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1657-1665.
|
[7] |
BOUGRIER C, CARRERE H, DELGENES J. Solubilisation of waste-activated sludge by ultrasonic treatment[J]. Chemical Engineering Journal, 2005, 106(2): 163-169.
|
[8] |
LIN J G, CHANG C N, CHANG S C. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization[J]. Bioresource Technology, 1997, 62(3): 85-90.
|
[9] |
TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009.
|
[10] |
DANIELS L, BELAY N, RAJAGOPAL B S, et al. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814): 509-511.
|
[11] |
GU B, WATSON D B, WU L, et al. Microbiological characteristics in a zero-valent iron reactive barrier[J]. Environmental Monitoring and Assessment, 2002, 77(3): 293-309.
|
[12] |
LIU Y, ZHANG Y, QUAN X, et al. Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation[J]. Water Research, 2011, 45(3): 1258-1266.
|
[13] |
KARRI S, SIERRA-ALVAREZ R, FIELD J A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge[J]. Biotechnology and Bioengineering, 2005, 92(7): 810-819.
|
[14] |
FENG Y, ZHANG Y, QUAN X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014, 52: 242-250.
|
[15] |
HU Y, HAO X, ZHAO D, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J]. Chemosphere, 2015, 140: 34-39.
|
[16] |
LUO J, FENG L, CHEN Y, et al. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron[J]. Journal of Biotechnology, 2014, 187: 98-105.
|
[17] |
SU L, SHI X, GUO G, et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 461-468.
|
[18] |
LEE C, KIM J Y, LEE W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4927-4933.
|
[19] |
LI Q, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602.
|
[20] |
SONDI I, SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1): 177-182.
|
[21] |
XIU Z M, GREGORY K B, LOWRY G V, et al. Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp[J]. Environmental Science & Technology, 2010, 44(19): 7647-7651.
|
[22] |
MARSALEK B, JANCULA D, MARSALKOVA E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria[J]. Environmental Science & Technology, 2012, 46(4): 2316-2323.
|
[23] |
YANG Y, GUO J, HU Z. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion[J]. Water Research, 2013, 47(17): 6790-6800.
|
[24] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156.
|
[25] |
LIU Y, WANG Q, ZHANG Y, et al. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate[J]. Sci. Rep., 2015, 5: 8263.
|
[26] |
BATSTONE D J, TAIT S, STARRENBURG D. Estimation of hydrolysis parameters in full-scale anerobic digesters[J]. Biotechnol. Bioeng., 2009, 102(5): 1513-1520.
|
[27] |
GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994—2014)[J]. Water Research, 2015, 75: 224-248.
|
[28] |
CHOI O, HU Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12): 4583-4588.
|
[29] |
KIM S, CHOI K, CHUNG J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496.
|
[30] |
KIRSCHLING T L, GREGORY K B, MINKLEY J, et al. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(9): 3474-3480.
|