[1] |
周萍, 陆敏, 闫红杰. 管道化溶出技术在我国的进展[J]. 轻工科技, 2007, 23(10):24-26. ZHOU P, LU M, YAN H J. Development of pipeline dissolution technology in China[J]. Guangxi Journal of Light Industry, 2007, 23(10):24-26.
|
[2] |
侯用兴, 李旺兴, 吕子剑. 管道化溶出一水硬铝石型铝土矿的工业实践[J]. 轻金属, 2000, 37(3):23-26. HOU Y X, LI W X, LÜ Z J. Industrial practice of pipeline dissolution of diaspore type bauxite[J]. Light Metals, 2000, 37(3):23-26.
|
[3] |
毕诗文. 氧化铝生产工艺[M]. 北京:化学工业出版社, 2006:4-20. BI S W. Alumina Production Technology[M]. Beijing:Chemical Industry Press, 2006:4-20.
|
[4] |
陈君, 唐秀明, 宋彦坡. 基于能流界面参数的氧化铝溶出过程节能优化[J]. 兵工自动化, 2013, 32(8):38-42. CHEN J, TANG X M, SONG Y P. Alumina digestion process optimization based on energy flow interface parameter[J]. Ordnance Industry Automation, 2013, 32(8):38-42.
|
[5] |
侯炳毅, 卫津萍. 高压溶出机组汽水系统的能量优化[J]. 有色金属(冶炼部分), 2004, 41(4):40-42. HOU B Y, WEI J P. Energy optimization of stream-water system in high pressure digestion unit[J]. Nonferrous Metals (Smelting Section), 2004, 41(4):40-42.
|
[6] |
SIDRAK Y L. Dynamic simulation approach to digester ratio control in alumina production[J]. Ind. Eng. Chem. Res., 1998, 37(4):1404-1409.
|
[7] |
桂卫华, 崔书君, 阳春华, 等. 氧化铝管式降膜蒸发器的(火用)分析[J]. 控制工程, 2010, 17(6):723-726. GUI W H, CUI S J, YANG C H, et al. Exergy analysis of tube falling-film evaporator in alumina production process[J]. Control Engineering of China, 2010, 17(6):723-726.
|
[8] |
阳春华, 柴琴琴, 桂卫华. 基于(火用)分析的氧化铝蒸发过程能耗优化[J]. 化工学报, 2011, 62(7):1957-1962. YANG C H, CHAI Q Q, GUI W H. Energy consumption optimization for alumina evaporation process based on exergy analysis[J]. CIESC Journal, 2011, 62(7):1957-1962.
|
[9] |
王宇. 氧化铝生产过程的模拟与仿真[D]. 长沙:中南大学, 2005. WANG Y. Modeling and simulation of alumina production process[D]. Changsha:Central South University, 2005.
|
[10] |
MABROUK A A, NAFEY A S, FATH H E S. Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process[J]. Desalination, 2007, 204(1/2/3):482-500.
|
[11] |
ENSINAS A V, MODESTO M, NEBRA S A, et al. Reduction of irreversibility generation in sugar and ethanol production from sugarcane[J]. Energy, 2009, 34(5):680-688.
|
[12] |
吴永建, 周晓杰, 柴天佑, 等. 氧化铝熟料烧结回转窑智能控制系统设计与应用[J]. 华东理工大学学报(自然科学版), 2006, 32(7):745-749. WU Y J, ZHOU X J, CHAI T Y, et al. Design and application of intelligent control system of a rotary kiln process for alumina production[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2006, 32(7):745-749.
|
[13] |
葛世恒. 氧化铝生产工业的能耗分析及节能研究[D]. 长沙:中南大学, 2010. GE S H. Alumina production of industrial energy consumption analysis and energy conservation research[D]. Changsha:Central South University, 2010.
|
[14] |
DU T, SHI T, LIU Y, et al. Energy consumption and its influencing factors of iron and steel enterprise[J]. Journal of Iron & Steel Research International, 2013, 20(8):8-13.
|
[15] |
CENGEL Y A, BOLES M A. Thermodynamics-an engineering approach[J]. McGraw-Hill Series in Mechanical Engineering, 2006, 33(4):1297-1305.
|
[16] |
GLEICH A V, AYRES R U, GÖßLING-REISEMANN S. Sustainable Metals Management[M]. Berlin:Springer Netherlands, 2006:141-194.
|
[17] |
杨东华. (火用)分析和能级分析[M]. 北京:科学出版社, 1986:163-180. YANG D H. Exergy Analysis and Energy Analysis[M]. Beijing:Science Press, 1986:163-180.
|
[18] |
潘勇. (火用)分析环境模型及其确立原则的研究[J]. 煤炭与化工, 2007, 30(6):18-20. PAN Y. Research on environmental reference model of exergy analysis and its basic principles[J]. Coal and Chemical Industry, 2007, 30(6):18-20.
|
[19] |
能量变换恳话会编(日本). 能量有效利用技术[M]. 王维城, 马润田, 译. 北京:化学工业出版社, 1984:3-232. Technology of Energy Efficient Use[M]. WANG W C, MA R T, trans. Beijing:Chemical Industry Press, 1984:3-232.
|
[20] |
郑丹星, 武向红, 宋之平, 等. (火用)分析技术导则国家标准的研究及修订[J]. 华北电力大学学报, 2005, 32(2):103-107. ZHENG D X, WU X H, SONG Z P, et al. Research and revision on national standard of exergy analysis technical guide[J]. Journal of North China Electric Power University, 2005, 32(2):103-107.
|
[21] |
桂卫华, 阳春华. 复杂有色冶金生产过程智能建模、控制与优化[M]. 北京:科学出版社, 2011:257-260. GUI W H, YANG C H. Ferrous Metallurgy Production Process Intelligence Complex Modeling, Control and Optimization[M]. Beijing:Science Press, 2011:257-260.
|
[22] |
ZHOU X J, YANG C H, GUI W H. Initial version of state transition algorithm[C]//International Conference on Digital Manufacturing & Automation. IEEE Computer Society, 2011:644-647.
|
[23] |
ZHOU X J, YANG C H, GUI W H. State transition algorithm[J]. Journal of Industrial and Management Optimization (JIMO), 2012, 8(4):1039-1056.
|
[24] |
ZHOU X J, YANG C H, GUI W H. Nonlinear system identification and control using state transition algorithm[J]. Applied Mathematics and Computation, 2014, 226(1):169-179.
|
[25] |
ZHOU X J, GAO D Y, SIMPSON A R. Optimal design of water distribution networks by a discrete state transition algorithm[J]. Engineering Optimization, 2016, 48(4):603-628.
|
[26] |
ZHOU X J, GAO D Y, YANG C H, et al. Discrete state transition algorithm for unconstrained integer optimization problems[J]. Neurocomputing, 2016, 173(3):864-874.
|
[27] |
ZHOU X J, GAO D Y, YANG C H. A comparative study of state transition algorithm with harmony search and artificial bee colony[J]. Advances in Intelligent Systems & Computing, 2012, 21(2):651-659.
|
[28] |
ZHOU X J, YANG C H, GUI W H. A comparative study of STA on large scale global optimization[C]//World Congress on Intelligent Control and Automation, 2016.
|
[29] |
ANNEALING O B S. Optimization by simulated annealing[J]. Science, 1983, 220(4598):671-680.
|
[30] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, 1995, 4:1942-1948.
|