[1] |
阮奇, 叶长燊, 陈文波, 等. 复杂逆流多效蒸发系统优化设计的模型与算法[J]. 化工学报, 2001, 52(8):616-621. RUAN J, YE C S, CHEN W B, et al. Model and algorithm for complex multi-effect evaporation system[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(8):616-621.
|
[2] |
聂晓凯, 阳春华, 柴琴琴, 等. 氧化铝蒸发的动态过程建模与仿真[J]. 化工自动化及仪表, 2011, 38(3):279-283. NIE X K, YANG C H, CHAI Q Q, et al. Dynamic modeling and simulation of alumina evaporation process[J]. Control and Instrumentation in Chemical Industry, 2011, 38(3):279-283.
|
[3] |
KAM K M, SAHA P, TADE M O, et al. Models of an industrial evaporator system for education and research in process control[J]. Developments in Chemical Engineering & Mineral Processing, 2002, 10(1/2):105-127.
|
[4] |
张建智, 彭小奇, 李时民, 等. 基于热分析和(火用)分析的氧化铝生产蒸发工序节能研究[J]. 中南大学学报(自然科学版), 2012, 42(11):3556-3563. ZHANG J Z, PENG X Q, LI S M, et al. Energy saving research at alumina evaporation process based on thermal analysis and exergy analysis[J]. Journal of Central South University(Science and Technology), 2012, 42(11):3556-3563.
|
[5] |
阳春华, 柴琴琴, 桂卫华. 基于(火用)分析的氧化铝蒸发过程能耗优化[J]. 化工学报, 2011, 62(7):1957-1962. YANG C H, CHAI Q Q, GUI W H. Optimization of energy consumption for alumina evaporation process based on exergy analysis[J]. CIESC Journal, 2011, 62(7):1957-1962.
|
[6] |
MABROUK A A, NAFEY A S, FATH H E S. Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process[J]. Desalination, 2007, 204(s 1-3):482-500.
|
[7] |
ENSINAS A V, MODESTO M, NEBRA S A, et al. Reduction of irreversibility generation in sugar and ethanol production from sugarcane[J]. Energy, 2009, 34(5):680-688.
|
[8] |
葛世恒. 氧化铝生产工业的能耗分析及节能研究[D]. 长沙:中南大学, 2010. GE S H. Alumina production of industrial energy consumption analysis and energy conservation research[D]. Changsha:Central South University, 2010.
|
[9] |
桂卫华, 崔书君, 阳春华, 等. 氧化铝管式降膜蒸发器的(火用)分析[J]. 控制工程, 2010, 17(6):723-726. GUI W H, CUI S J, YANG C H, et al. Exergy analysis of alumina tube falling film evaporator[J]. Control Engineering of China, 2010, 17(6):723-726.
|
[10] |
SIMPSON R, ALMONACID S, LOPEZ D, et al. Optimum design and operating conditions of multiple effect evaporators:tomato paste[J]. Journal of Food Engineering, 2008, 89(4):488-497.
|
[11] |
CHAI Q Q, YANG C H, TEO K L, et al. Optimal control of an industrial-scale evaporation process:sodium aluminate solution[J]. Control Engineering Practice, 2012, 20(6):618-628.
|
[12] |
TO L C, TADE M O, RANGAIAH G P L. Implementation of a differential geometric nonlinear controller on an industrial evaporator system[J]. Control Engineering Practice, 1998, 6(11):1309-1319.
|
[13] |
KAM K M, TADE M O. Simulated nonlinear control studies of five-effect evaporator models[J]. Computers & Chemical Engineering, 2000, 23(11):1795-1810.
|
[14] |
ZHU H, CHAI Q, YANG C, et al. Vortex motion-based particle swarm optimization for energy consumption of alumina evaporation[J]. Canadian Journal of Chemical Engineering, 2012, 90(6):1418-1425.
|
[15] |
王永刚, 李海波, 柴天佑. 强制循环蒸发器的非线性解耦控制[J]. 化工学报, 2013, 64(6):2145-2152. WANG Y G, LI H B, CHAI T Y. Nonlinear decoupling control of forced-circulation evaporator[J]. CIESC Journal, 2013, 64(6):2145-2152.
|
[16] |
王永刚, 柴天佑. 强制循环蒸发系统的非线性自适应解耦PID控制[J]. 控制理论与应用, 2011, 28(9):1145-1153. WANG Y G, CHAI T Y. Adaptive decoupling switching control of the forced-circulation evaporation system with PID control[J]. Control Theory & Applications, 2011, 28(9):1145-1153.
|
[17] |
WANG Y, CHAI T, FU J, et al. Adaptive decoupling switching control of the forced-circulation evaporation system using neural networks[J]. Control Systems Technology IEEE Transactions on, 2013, 21(3):964-974.
|
[18] |
唐酞峰. 蒸发器液位高度的合理选取[J]. 中国井矿盐, 2005, 36(4):13-16. TANG T F. Rational selection of the evaporator liquid level height[J]. China Well and Rock Salt, 2005, 36(4):13-16.
|
[19] |
左健, 谢永芳, 王晓丽, 等. 基于(火用)的管式降膜蒸发器液位优化设定[J]. 化工学报, 2016, 67(3):891-896. ZUO J, XIE Y F, WANG X L, et al. Liquid level optimal-setting for tube falling film evaporator based on exergy[J]. CIESC Journal, 2016, 67(3):891-896.
|
[20] |
ÇENGEL Y A, BOLES M A. Thermodynamics:an engineering approach[J]. McGraw-Hill Series in Mechanical Engineering, 2006, 33(4):1297-1305.
|
[21] |
TAO D U, SHI T, LIU Y, et al. Energy consumption and its influencing factors of iron and steel enterprise[J]. Journal of Iron & Steel Research International, 2013, 20(8):8-13.
|
[22] |
严家录. 水和水蒸汽热力性质图表[M]. 2版. 北京:高等教育出版社, 2004:1-4. YAN J L. Thermodynamic Property Tables and Diagrams for Water and Steam[M]. 2nd ed. Beijing:Higher Education Press, 2004:1-4.
|
[23] |
ZHOU X J, YANG C H, GUI W H. Initial version of state transition algorithm[C]//International Conference on Digital Manufacturing and Automation (ICDMA), 2011:644-647.
|
[24] |
ZHOU X J, YANG C H, GUI W H. State transition algorithm[J]. Journal of Industrial and Management Optimization, 2012, 8(4):1039-1056.
|
[25] |
ZHOU X J, YANG C H, GUI W H. Nonlinear system identification and control using state transition algorithm[J]. Applied Mathematics and Computation, 2014, 226(1):169-179.
|
[26] |
ZHOU X J, GAO D Y, SIMPSON A R. Optimal design of water distribution networks by a discrete state transition algorithm[J]. Engineering Optimization, 2016, 48(4):603-628
|
[27] |
ZHOU X J, GAO D Y, YANG C H, et al. Discrete state transition algorithm for unconstrained integer optimization problems[J]. Neurocomputing, 2016, 173(3):864-874.
|
[28] |
ZHOU X J, GAO D Y, YANG C H. A comparative study of state transition algorithm with harmony search and artificial bee colony[J]. Advances in Intelligent Systems & Computing, 2012, 21(2):651-659.
|
[29] |
ZHOU X J, YANG C H, GUI W H. A comparative study of STA on large scale global optimization[C]//World Congress on Intelligent Control and Automation, 2016.
|
[30] |
HAN J, DONG T X, ZHOU X J, et al. State transition algorithm for constrained optimization problems[C]//Chinese Control Conference, 2014:7543-7548.
|