[1] |
王垚, 金涌, 魏飞, 等. 原生纳米级颗粒的聚团散式流态化[J]. 化工学报, 2002, 53(4): 344-348.
|
|
WANG Y, JIN Y, WEI F, et al. Agglomerate particulate fluidization of primary nano-particles[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(4): 344-348.
|
[2] |
HONG R, DING J, LI H. Fluidization of fine powders in fluidized beds with an upward or a downward air jet[J]. China Particuology, 2005, 3(3): 181-186.
|
[3] |
张国杰, 皮立强, 杨兴灿, 等. 超细粉在内循环流化床中的流态化特性[J]. 化学反应工程与工艺, 2015, 31(3): 262-265.
|
|
ZHANG G J, PI L Q, YANG X C, et al. Fluidization behavior of ultrafine powders in an internal circulating fluidized-bed[J]. Chemical Reaction Engineering and Technology, 2015, 31(3): 262-265.
|
[4] |
张国杰. 超细粉在内循环流化床中的流态化[D]. 成都: 四川大学, 2013.
|
|
ZHANG G J.Fluidization behavior of ultrafine powders in an internal circulating fluidized bed[D]. Chengdu: Sichuan University, 2013.
|
[5] |
ZHU X, ZHANG Q, WANG Y, et al. Review on the nanoparticle fluidization science and technology[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 9-22.
|
[6] |
LIANG X, DUAN H, ZHOU T, et al. Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J]. Advanced Powder Technology, 2014, 25(1): 236-243.
|
[7] |
SI C D, ZHOU J, GUO Q J, et al. The effect of acoustic field on the particle concentration profiles in fluidized bed[J]. International Journal of Chemical Reactor Engineering, 2012, 12: 1-13.
|
[8] |
QUEVEDO J A, OMOSEBI A, PFEFFER R. Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets[J]. AIChE Journal, 2010, 56(6): 1456-1468.
|
[9] |
DUAN H, LIANG X, ZHOU T, et al. Fluidization of mixed SiO2 and ZnO nanoparticles by adding coarse particles[J]. Powder Technology, 2014, 267: 315-321.
|
[10] |
ZHU X, ZHANG Q, WANG Y, et al. Review on the nanoparticle fluidization science and technology [J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 9-22.
|
[11] |
周勇, 马兰, 石炎福. 超细粉在导向管喷动床中的固体循环速率[J]. 化工学报, 2004, 55(9): 1532-1536.
|
|
ZHOU Y, MA L, SHI Y F. Solids circulation of ultra-fine powders in spouted bed with draft tube[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(9): 1532-1536.
|
[12] |
皮立强, 高凯歌, 杨兴灿, 等. 纳米 TiO2 颗粒在声场导向管喷动流化床中的流化特性[J]. 化学反应工程与工艺, 2016, 32(2): 114-119.
|
|
PI L Q, GAO K G, YANG X C, et al. Fluidization characteristics of TiO2 nanoparticles in an acoustic spouted-fluidized bed with a draft tube[J]. Chemical Reaction Engineering and Technology, 2016, 32(2): 114-119.
|
[13] |
TIMOSHENKO S, GOODIER J. Theory of Elasticity [M]. New York: McGraw-Hill Book, 1970: 102.
|
[14] |
MARTIN L D, OMMEN R V. A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds[J]. Journal of Nanoparticle Research, 2013, 15(11): 2055.
|
[15] |
MARTIN L D, OMMEN R V. Estimating the size of polar and apolar nanoparticle agglomerates in a fluidized bed[J]. Journal of Politics, 2013, 56(56): 818-823.
|
[16] |
LIANG X, WANG J, ZHOU T, et al. Modified model for estimation of agglomerate sizes of binary mixed nanoparticles in a vibro-fluidized bed[J]. Korean Journal of Chemical Engineering, 2015, 32(8): 1515-1521.
|
[17] |
LIANG X, ZHOU Y, ZOU L, et al. Fluidization behavior of binary iron-containing nanoparticle mixtures in a vibro-fluidized bed[J]. Powder Technology, 2016, 304: 101-107.
|
[18] |
ZHOU L, WANG H, ZHOU T, et al. Model of estimating nano-particle agglomerate sizes in a vibro-fluidized bed[J]. Advanced Powder Technology, 2013, 24(1): 311-316.
|
[19] |
ISRAELACHVILI J N. Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems[M]. New York: Academic Press, 1985: 77.
|
[20] |
MOROOKA S, KUSAKABE K, KOBATA A, et al. Fluidization state of ultrafine powders[J]. Journal of Chemical Engineering of Japan, 1988, 21(1): 41-46.
|
[21] |
ZHOU T, LI H. Force balance modelling for agglomerating fluidization of cohesive particles[J]. Powder Technology, 2000, 111(1): 60-65.
|
[22] |
袁竹林, 朱立平, 耿凡. 气固两相流动与数值模拟[M]. 南京: 东南大学出版社, 2013:35.
|
|
YUAN Z L, ZHU L P, GENG F. Gas-Solid Two Phase Flow and Numerical Simulation[M]. Nanjing: Southeast University Press, 2013: 35.
|
[23] |
CHIRONE R, MASSIMILLA L, RUSSO S. Bubble-free fluidization of a cohesive powder in an acoustic field[J]. Chemical Engineering Science, 1993, 48(1): 41-52.
|
[24] |
BUTT H J, KAPPL M. Surface and Interfacial Forces[M]. New York: John Wiley & Sons Inc., 2009: 34.
|
[25] |
MARTIN L D, FABRE A, RUUD VAN OMMEN J. The fractal scaling of fluidized nanoparticle agglomerates[J]. Chemical Engineering Science, 2014, 112: 79-86.
|
[26] |
SÁNCHEZ-LÓPEZ J C, Fernández A. TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation[J]. Acta Materialia, 2000, 48(14): 3761-3771.
|
[27] |
NAM C H, PFEFFER R, DAVE R N, et al. Aerated vibrofluidization of silica nanoparticles[J]. AIChE Journal, 2004, 50(8): 1776-1785.
|
[28] |
QUINTANILLA M, VALVERDE J, ESPIN M, et al. Electrofluidization of silica nanoparticle agglomerates[J]. Industrial & Engineering Chemistry Research, 2011, 51(1): 531-538.
|
[29] |
RUSSO P, CHIRONE R, MASSIMILLA L, et al. The influence of the frequency of acoustic-waves on sound-assisted fluidization of beds of fine particles[J]. Powder Technology, 1995, 82(3): 219-230.
|