[1] |
O'REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353 (6346): 737-740.
|
[2] |
MARTINSON A B F, HAMANN T W, PELLIN M J, et al. New architectures for dye-sensitized solar cells [J]. Chemistry, 2008, 14 (15): 4458-4467.
|
[3] |
GRATZEL M. Dye-sensitized solar cells [J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2010, 110: 6595-6663.
|
[4] |
Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nature Chemistry, 2014, 6: 242-247.
|
[5] |
付乔明, 赵春贵, 杨素萍. 3种紫细菌天然光合色素敏化DSSC光电转化性能 [J]. 化工学报, 2014, 65 (8): 3202-3211FU Q M, ZHAO C G, YANG S P. Photoelectric conversion performance of natural photosynthetic pigments from three typical members of purple bacteria for dye-sensitized solar cells [J]. CIESC Journal, 2014, 65 (8): 3202-3211
|
[6] |
BISQUERT J, CAHEN D, HODES G, et al. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J]. The Journal of Physical Chemistry B, 2004, 108 (24): 8106-8118.
|
[7] |
MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J]. Nano Letters, 2006, 6 (2): 215-218.
|
[8] |
CHENG H, ZHAO X J, SUI X T, et al. Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode [J]. Journal of Nanoparticle Research, 2011, 13 (2): 555-562.
|
[9] |
LEE W, KANG S H, MIN S K, et al. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electrochemistry Communications, 2008, 10 (10): 1579-1582.
|
[10] |
SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the American Chemical Society, 2008, 130 (4): 1124-1125.
|
[11] |
KAI Z, NEALE N R, MIEDANER A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Letters, 2007, 7: 69-74.
|
[12] |
MATT L, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solar cells [J]. Nature Materials, 2005, 4 (6): 455-459.
|
[13] |
LESCHKIES K S, DIVAKAR R, BASU J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J]. Nano Letters, 2007, 7 (6): 1793-1798.
|
[14] |
GUO W, XU C, WANG X, et al. Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2012, 134 (9): 4437-4441.
|
[15] |
YIN L W, TANG R. Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures [J]. Journal of Materials Chemistry A, 2015, 3 (33): 17417-17425.
|
[16] |
JIU J, ISODA S, WANG F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film [J]. Journal of Physical Chemistry B, 2006, 110 (5): 2087-2092.
|
[17] |
LIU B, AYDIL E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2009, 131 (11): 3985-3990.
|
[18] |
KWAK E S, LEE W, PARK N G, et al. Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells [J]. Advanced Functional Materials, 2009, 19 (7): 1093-1099.
|
[19] |
CHO C Y, MOON J H. Hierarchically porous TiO2 electrodes fabricated by dual templating methods for dye-sensitized solar cells [J]. Advanced Materials, 2011, 23 (26): 2971-2975.
|
[20] |
SHIN J H, KANG J H, JIN W M, et al. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells [J]. Langmuir, 2011, 27 (2): 856-860.
|
[21] |
KIM H N, MOON J H. ZnO-treated TiO2 inverse opal electrodes for dye-sensitized solar cells [J]. Current Applied Physics, 2013, 13 (5): 841-845.
|
[22] |
ZHAO Z, LIU G, LI B, et al. Dye-sensitized solar cells based on hierarchically structured porous TiO2 filled with nanoparticles [J]. Journal of Materials Chemistry A, 2015, 3 (21): 11320-11329.
|
[23] |
PENG T, ZHAO D, DAI K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity [J]. The Journal of Physical Chemistry B, 2005, 109 (11): 4947-4952.
|
[24] |
LEE S A, ABRAMS N M, HOERTZ P G, et al. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells [J]. Journal of Physical Chemistry B, 2008, 112 (46): 14415-14421.
|
[25] |
DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J]. Applied Physics Letters, 2007, 91 (2): 737.
|
[26] |
SATO A, DIGUNA L J, SHEN Q, et al. Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots [J]. Japanese Journal of Applied Physics, 2006, 45 (6B): 5563-5568.
|
[27] |
CHEN J, VON FREYMANN G, CHOI S, et al. Amplified photochemistry with slow photons [J]. Advanced Materials, 2006, 988 (14): 1915-1919.
|
[28] |
CURTI M, SCHNEIDER J, BAHNEMANN D W, et al. Inverse opal photonic crystals as a strategy to improve photocatalysis: underexplored questions [J]. The Journal of Physical Chemistry Letters, 2015, 6 (19): 3903-3910.
|
[29] |
DU J, LAI X, YANG N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano, 2011, 5 (1): 590-596.
|
[30] |
LIU J, LI M, WANG J, SONG Y, et al. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability [J]. Environmental Science & Technology, 2009, 43 (24): 9425-9431.
|
[31] |
LIU W, WANG A, TANG J, et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films [J]. Microporous and Mesoporous Materials, 2015, 204: 143-148.
|
[32] |
WANG A, CHEN S L, DONG P. Rapid fabrication of a large-area 3D silica colloidal crystal thin film by a room temperature floating self-assembly method [J]. Materials Letters, 2009, 63 (18/19): 1586-1589.
|
[33] |
WIJNHOVEN J, VOS W L. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998, 281 (5378): 802-804.
|
[34] |
LIU W, ZOU B, ZHAO J, et al. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity [J]. Thin Solid Films, 2010, 518 (17): 4923-4927.
|