[1] |
VIGNAROOBAN K, XU X, ARVAY A, et al. Heat transfer fluids for concentrating solar power systems-a review[J]. Applied Energy, 2015, 146:383-396.
|
[2] |
HOFFSCHMIDT B, TÉLLEZ F M, VALVERDE A, et al. Performance evaluation of the 200-kWth HiTRec-Ⅱ open volumetric air receiver[J]. Journal of Solar Energy Engineering, 2003, 125(1):87-94.
|
[3] |
LI P W. Halide and oxy-halide eutectic systems for high performance high temperature heat transfer fluids:report of DOE's office of scientific and technical information[R]. Golden, Colorado:National Renewable Energy Laboratory (NREL), 2012.
|
[4] |
WEI X L, SONG M, WANG W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156:306-310.
|
[5] |
胡宝华, 丁静, 魏小兰, 等. 高温熔盐的热物性测试及热稳定性分析[J]. 无机盐工业, 2010, 42(1):22-24. HU B H, DING J, WEI X L, et al. Test of thermal physics and analysis on thermal stability of high temperature molten salt[J]. Inorganic Chemicals Industry, 2010, 42(1):22-24.
|
[6] |
MYERS JR P D, GOSWAMI D Y. Thermal energy storage using chloride salts and their eutectics[J]. Applied Thermal Engineering, 2016, 109:889-900.
|
[7] |
XU Y T, XIA T D, WANG W P, et al. Hot corrosion failure mechanism of graphite materials in molten solar salt[J]. Solar Energy Materials & Solar Cells, 2015, 132(132):260-266.
|
[8] |
WANG J W, ZHANG C Z, LI Z H, et al. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2, in atmosphere[J]. Solar Energy Materials & Solar Cells, 2017, 164:146-155.
|
[9] |
WANG L, LI B, SHEN M, et al. Corrosion resistance of steel materials in LiCl-KCl melts[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(10):930-933.
|
[10] |
LU Y, CHENG B, WANG J W, et al. Corrosion behavior of Cr, Fe and Ni based superalloy in molten NaCl[J]. Rare Metal Materials & Engineering, 2014, 43(1):17-23.
|
[11] |
VIGNAROOBAN K, XU X H, WANG K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied Energy, 2015, 159:206-213.
|
[12] |
VIGNAROOBAN K, PUGAZHENDHI P, TUCKER C, et al. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications[J]. Solar Energy, 2014, 103:62-69.
|
[13] |
GOMEZ-VIDAL J C, FERNANDEZ A G, TIRAWAT R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production (Ⅰ):Pre-oxidation treatment and isothermal corrosion tests[J]. Solar Energy Materials & Solar Cells, 2017, 166:222-233.
|
[14] |
JUDITH C, TIRAWAT R, et al. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies[J]. Solar Energy Materials & Solar Cells, 2016, 157:234-244.
|
[15] |
宋明. 多元氯化物熔盐体系的构建及性能研究[D]. 广州:华南理工大学, 2015. SONG M. Construction and performance study of multi-chloride molten salts system[D]. Guangzhou:South China University of Technology, 2015.
|
[16] |
LEE Y Y, MCNALLAN M J. Ignition of nickel in environments containing oxygen and chlorine[J]. Metall. Trans. A, 1987, 18A:1099-1107.
|
[17] |
REESE E, GRABKE H J. Effect of sodium chloride to the oxidation of high-alloy chromium-nickel steels and chromium[J]. Mater. Corros., 1993, 43:547-551.
|
[18] |
HOFMEISTER M, KLEIN L, MIRAN H, et al. Corrosion behaviour of stainless steels and a single crystal superalloy in a ternary LiCl-KCl-CsCl molten salt[J]. Corrosion Science, 2015, 90:46-53.
|
[19] |
GRABKE H J, REESE E, SPIEGEL M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7):1023-1043.
|
[20] |
LIU S N, LIU Z D, WANG Y L, et al. A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts[J]. Corrosion Science, 2014, 83(6):396-408.
|
[21] |
A.约翰.塞德赖克斯. 不锈钢的腐蚀[M]. 北京:机械工业出版社, 1986:15-16. SEDRIKS A J. Corrosion of Stainless Steel[M]. Beijing:China Machine Press, 1986:15-16.
|
[22] |
ASTM. G1-03 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens[S]. 2011.
|
[23] |
BARIN I, PLATZKI G. Thermochemical Data of Pure Substances[M]. 3rd ed. Weinheim:Wiley-VCH, 1995:525-1293.
|
[24] |
GROLL M, BROST O, HEINE D. Corrosion of steels in contact with salt eutectics as latent heat storage materials:influence of water and other impurities[J]. Heat Recovery Systems & Chp., 1990, 10(10):567-572.
|
[25] |
DORCHEH A S, DURHAM R N, GALETZ M C. Corrosion behavior of stainless and low-chromium steels and In625 in molten nitrate salts at 600℃[J]. Solar Energy Materials and Solar Cells, 2016, 144:109-116.
|
[26] |
梁成浩. 金属腐蚀性导论[M]. 北京:机械工业出版社, 1999. LIANG C H. Introduction to Corrosion of Metals[M]. Beijing:China Machine Press, 1999.
|
[27] |
彭海健, 金军, 李德富, 等. Ni-Cr-Mo耐蚀合金在CaCl2-CaF2熔盐中的腐蚀行为[J]. 金属学报, 2011, 47(9):1195-1199. PENG H J, JIN J, LI D F, et al. Corrosion behavior of Ni-Cr-Mo corrosion resistance alloys in CaCl2-CaF2 molten salt[J]. Acta Metallurgica Sinica, 2011, 47(9):1195-1199.
|
[28] |
DAVID R. Handbook of Chemistry and Physics[M]. 84th ed. CRC Press, 2003:4-39-4-93.
|
[29] |
林玉珍, 杨德钧. 腐蚀和腐蚀控制原理[M]. 2版. 北京:中国石化出版社, 2014. LIN Y Z, YANG D J. Principles of Corrosion and Corrosion Control[M]. 2nd ed. Beijing:Sinopec Press, 2014.
|
[30] |
SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho Falls:Idaho National Laboratory, 2010.
|