[1] |
扈本学, 徐彦峰, 苏光辉, 等. 水平窄缝内多孔介质传热特性研究[J]. 原子能科学技术, 2009, 43(5):431-434. HU B X, XU Y F, SU G H, et al. Characteristics of heat transfer for narrow gap on horizontal heated surface with porous media[J]. Atomic Energy Science and Technology, 2009, 43(5):431-434.
|
[2] |
左少华, 赵晓玥, 王杰阳, 等. 铝基Al2O3纳米多孔表面大容积池沸腾实验[J]. 化工进展, 2015, 34(5):1254-1258. ZUO S H, ZHAO X Y, WANG J Y, et al. Experimental study on pool boiling of aluminum base Al2O3 nano-porous surface[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1254-1258.
|
[3] |
刘阿龙, 徐宏, 王学生, 等. 复合粉末多孔表面管的沸腾传热[J]. 化工学报, 2006, 57(4):726-730. LIU A L, XU H, WANG X S, et al. Boiling heat transfer on composite powder porous surface tubes[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(4):726-730.
|
[4] |
马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014, 65(s1):180-187. MA Q, CHEN J, CHEN Z Q. Lattice Boltzmann simulation for heat and mass transfer in fractal porous media[J]. CIESC Journal, 2014, 65(s1):180-187.
|
[5] |
李金旺, 邹勇, 程林. 多孔结构毛细抽吸模型及实验验证[J]. 中国电机工程学报, 2011, 31(11):57-61. LI J W, ZOU Y, CHENG L. Development and experimental verification of capillary pumping model for porous structure[J]. Proceedings of the CSEE, 2011, 31(11):57-61.
|
[6] |
员盼锋, 史琳, 晋中华, 等. 薄层多孔层内池沸腾液体回流机理分析[J]. 发电设备, 2013, 27(5):307-310. YUAN P F, SHI L, JIN Z H, et al. Mechanism analysis of pool-boiling liquid backflow in thin porous coatings[J]. Power Equipment, 2013, 27(5):307-310.
|
[7] |
张晓杰, 朱彦雷, 白博峰, 等. 多孔球层内沸腾现象与传热特性研究[C]//2007多相流学术会议, 2007. ZHANG X J, ZHU Y L, BAI B F, et al. Boiling observation and heat transfer characteristics analysis in porous spherical layer[C]//2007 Multiphase Flow Conference, 2007.
|
[8] |
施娟. 泡沫金属强化沸腾传热过程的研究[D]. 南京:东南大学, 2015. SHI J. Study on boiling heat transfer enhancement with metal foams[D]. Nanjing:Southeast University, 2015.
|
[9] |
曹小林, 郑平, 晏刚, 等. 烧结双多孔介质中沸腾换热的实验研究[J]. 宇航学报, 2004, 25(6):690-693. CAO X L, ZHENG P, YAN G, et al. An experimental study on evaporative heat transfer in bi-dispersed wick structures[J]. Journal of Astronautics, 2004, 25(6):690-693.
|
[10] |
KISEEV V M, VLASSOV V V, MURAOKA I. Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches[J]. International Journal of Heat & Mass Transfer, 2010, 53(9/10):2143-2148.
|
[11] |
MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6):635-657.
|
[12] |
LAUNAY S, SARTRE V, BONJOUR J. Parametric analysis of loop heat pipe operation:a literature review[J]. International Journal of Thermal Sciences, 2007, 46(7):621-636.
|
[13] |
WANG D Z, WANG X Y, ZHOU P, et al. Influence of packing density on performance of porous wick for LHP[J]. Powder Technology, 2014, 258(258):6-10
|
[14] |
王野, 纪献兵, 郑晓欢, 等. 多尺度复合毛细芯环路热管的传热特性[J]. 化工学报, 2015, 66(6):2055-2061. WANG Y, JI X B, ZHENG X H, et al. Heat transfer characteristics of loop heat pipe with modulated composite porous wick[J]. CIESC Journal, 2015, 66(6):2055-2061.
|
[15] |
LING W S, ZHOU W, LIU R L, et al. Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure[J]. Applied Thermal Engineering, 2016, 108:251-260.
|
[16] |
FRANCHI G, HUANG X. Development of composite wicks for heat pipe performance enhancement[J]. Heat Transfer Engineering, 2008, 29(10):873-884.
|
[17] |
ZAN K J, ZAN C J, CHEN Y M, et al. Analysis of the parameters of the sintered loop heat pipe[J]. Heat Transfer-Asian Research, 2004, 33(8):515-526.
|
[18] |
徐计元, 邹勇, 程林, 等. 烧结镍毛细芯的孔参数控制及其对抽吸性能的影响[J]. 化工学报, 2012, 63(2):463-469. XU J Y, ZOU Y, CHENG L, et al. Control of pore parameters and influence on capillary pumping performance of sintered nickel wicks[J]. CIESC Journal, 2012, 63(2):463-469.
|
[19] |
WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3):273-283.
|
[20] |
CHEBBI R. Dynamics of liquid penetration into capillary tubes[J]. Journal of Colloid & Interface Science, 2007, 315(1):255-260.
|
[21] |
EXTRAND C W. Forces, pressures and energies associated with liquid rising in nonuniform capillary tubes[J]. Journal of Colloid & Interface Science, 2015, 450:135-140..
|
[22] |
MARTIC G, GENTNER F, SEVENO D, et al. A molecular dynamics simulation of capillary imbibition[J]. Langmuir, 2002, 18(21):7971-7976.
|
[23] |
FRIES N, DREYER M. The transition from inertial to viscous flow in capillary rise[J]. Journal of Colloid & Interface Science, 2008, 327(1):125-128.
|
[24] |
FRIES N, DREYER M. An analytic solution of capillary rise restrained by gravity[J]. Journal of Colloid & Interface Science, 2008, 320(1):259-63
|
[25] |
QUERE D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5):533-538.
|
[26] |
ANDRUKH T, MONAENKOVA D, RUBIN B, et al. Meniscus formation in a capillary and the role of contact line friction[J]. Soft Matter, 2013, 10(4):609-615.
|
[27] |
BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. Philosophical Magazine, 1923, 45(267):525-531.
|
[28] |
ICHIKAWA N, SATODA Y. Interface dynamics of capillary flow in a tube under negligible gravity condition[J]. Journal of Colloid & Interface Science, 1994, 162(2):350-355.
|
[29] |
LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid-Zeitschrift, 1918, 23:15-22
|
[30] |
TAS N R, HANEVELD J, JANSEN H V, et al. Capillary filling speed of water in nanochannels[J]. Applied Physics Letters, 2004, 85(15):3274-3276.
|
[31] |
ZHMUD B V, TIBERG F, HALLSTENSSON K. Dynamics of capillary rise[J]. Journal of Colloid & Interface Science, 2000, 228(2):263.
|